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Let G be a finite group and let M be a ZG-module. Define the cohomology group
Hn(G,M). [You may assume independence of choice of resolution.]

Let M1 and M2 be ZG-modules. Show that Hn(G,M1
⊕

M2) =
Hn(G,M1)

⊕
Hn(G,M2).

Let K be a subgroup of G.

For a ZK-module X, let Y be the coinduced module HomK(ZG,X) with G-action
given by (gf)(r) = f(rg), where f ∈ HomK(ZG,X) and r ∈ ZG.

Prove Shapiro’s Lemma, that Hn(K,X) = Hn(G, Y ).

Consider ZG as a ZG-module N via conjugation g.x = gxg−1 for g ∈ G and x ∈ ZG.

Show that Hn(G,N) =
⊕

Hn(CG(gi),Z) where the direct sum is taken over a set
of conjugacy class representatives gi and CG(gi) is the centraliser of gi in G.

Now let G = S3, and calculate Hn(S3, N) for n = 1 and for n = 2. [You may
assume that H2(S3,Z) = Z/2Z but you should prove any other results you use.]

2

Define the Schur multiplier M(G) of a group G.

State Hopf’s formula for M(G) in terms of a presentation of the group G.

By writing down (without proof) a partial free resolution of the trivial ZG-module
Z arising from the group presentation, prove Hopf’s formula.

Calculate the Schur multiplier of the abelian group C2 × C4 × C6.
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Let R be a (not necessarily commutative) ring, and let I be a (2-sided) ideal of R
such that I2 = 0.

Show that 1 + I = {1 + r : r ∈ I} forms an abelian group under multiplication and
that it is isomorphic to the additive group of I.

Suppose you are given an isomorphism between R/I and ZG for a group G.

Show that left multiplication in R induces a left ZG-module structure on I, and
similarly on the right. Deduce that there is a conjugation action of G on I, and on 1 + I
such that I and 1 + I are isomorphic as ZG-modules.

Show that multiplication in R yields an extension of groups

1 → 1 + I → U → G → 1

for some subgroup U of the multiplicative units of R. Explain how to obtain an element
x of H2(G, 1 + I) corresponding to this extension.

Suppose that you also have a ring R1 with ideal I1 such that I21 = 0, and an
isomorphism R1/I1 → ZG. Similarly obtain an extension 1 → 1 + I1 → U1 → G → 1 for
a subgroup U1 of units of R1, and an element x1 of H2(G, 1 + I1).

Suppose that θ is a ZG-module isomorphism 1 + I1 → 1 + I and ϕ is the induced
isomorphism H2(G, 1 + I1) → H2(G, 1 + I).

Suppose that R and R1 are isomorphic as rings. Is ϕ(x1) necessarily equal to x?
Justify your answer.

4

Let G be a group with normal subgroup H. Let M be a ZG-module.

State the associated five term exact sequence of cohomology, carefully describing
the maps involved.

Let K be a finite non-abelian simple group which is isomorphic to F/R where F is
a free group of rank n and R is generated as a normal subgroup of F by n elements. Show
that H2(K,Z) = 0 (where the action on Z is trivial).
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