MAMA/146, NST3AS/146, MAAS/146

MAT3 MATHEMATICAL TRIPOS Part III

Friday 31 May 2024 $1:\!30~\mathrm{pm}$ to 3:30 pm

PAPER 146

SYMPLECTIC TOPOLOGY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) State and prove the "two-out-of-three" property for $\mathrm{GL}(n,\mathbb{C})$, $\mathrm{Sp}(2n)$, and $\mathrm{O}(2n)$.

(b) Write down a homeomorphism from the Lagrangian Grassmanian $LGr(\mathbb{R}^{2n})$ to a coset space G/H of two matrix groups. Illustrate your map in the n = 1 case.

(c) By considering a suitable map to $LGr(\mathbb{R}^2)$ or otherwise, show that for any $n \ge 1$ the group $H^1(LGr(\mathbb{R}^{2n});\mathbb{Z})$ is non-zero.

(d) Prove carefully that the fibre bundle $\mathcal{LGr}(TS^2) \to S^2$ is not smoothly trivial for any choice of symplectic structure on S^2 .

(e) For any $n \ge 1$, exhibit a compact symplectic manifold (M, ω) of dimension 2n such that the fibre bundle $\mathcal{LGr}(TM) \to M$ is smoothly trivial.

2 State the Weinstein neighbourhood theorem. Give examples (with proof) of

- (i) a smooth, orientable manifold L such for any Lagrangian embedding of L into a symplectic manifold (M, ω) , its image is non-displaceable under smooth isotopy. Give also an example of such a Lagrangian embedding with M compact.
- (ii) a Lagrangian L in a compact symplectic manifold M which is displaceable under smooth isotopy, but not symplectic isotopy;
- (iii) a Lagrangian L in a compact symplectic manifold M which is displaceable under arbitrarily small symplectic isotopy (that is, for all $\epsilon > 0$, there exists some symplectic isotopy ϕ_t such that $\phi_1(L) \cap L = 0$ and $\|\phi_t\|_{C^{\infty}} \leq \epsilon$ for all t) but not displaceable under *any* Hamiltonian isotopy;
- (iv) a Lagrangian in a compact symplectic manifold M which is displaceable under Hamiltonian isotopy.

3 State and prove Moser's theorem on families of symplectic forms on compact manifolds.

Let $d \ge 1$ and $n \ge 2$. Briefly explain how to deduce that any pair X and X' of smooth degree d hypersurfaces in \mathbb{P}^n are symplectomorphic. Show that for any such hypersurface X in \mathbb{P}^n , the symplectomorphism group $\operatorname{Symp}(X, \omega_{FS}|_X)$ has a subgroup isomorphic to

 $(\mathbb{Z}/d\mathbb{Z})^{n+1}/(1,\cdots,1) \cong (\mathbb{Z}/d\mathbb{Z})^n.$

Part III, Paper 146

4 (a) State the neighbourhood theorem for symplectic submanifolds.

(b) Let (X^4, ω) be a symplectic manifold and C be a smooth genus zero symplectic submanifold of X with $C \cdot C = -4$. Explain how to symplectically blow-down C.

(c) Let E(1) be the complex surface constructed by blowing up the base points of a general pencil of cubics. Write a holomorphic map $\pi : E(1) \to \mathbb{P}^1$ with connected fibres and exhibit a holomorphic section of that map. Let $C \subset E(1)$ be a smooth, connected complex curve. Suppose that $C \cdot C = k$ and that $\pi|_C : C \to \mathbb{P}^1$ has degree d. What is the genus of C? Justify your answer.

END OF PAPER