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1 (a) State and prove the “two-out-of-three” property for GL(n,C), Sp(2n), and
O(2n).

(b) Write down a homeomorphism from the Lagrangian Grassmanian LGr(R2n) to
a coset space G/H of two matrix groups. Illustrate your map in the n = 1 case.

(c) By considering a suitable map to LGr(R2) or otherwise, show that for any n ⩾ 1
the group H1(LGr(R2n);Z) is non-zero.

(d) Prove carefully that the fibre bundle LGr(TS2) → S2 is not smoothly trivial for
any choice of symplectic structure on S2.

(e) For any n ⩾ 1, exhibit a compact symplectic manifold (M,ω) of dimension 2n
such that the fibre bundle LGr(TM) → M is smoothly trivial.

2 State the Weinstein neighbourhood theorem. Give examples (with proof) of

(i) a smooth, orientable manifold L such for any Lagrangian embedding of L into a
symplectic manifold (M,ω), its image is non-displaceable under smooth isotopy. Give
also an example of such a Lagrangian embedding with M compact.

(ii) a Lagrangian L in a compact symplectic manifold M which is displaceable under
smooth isotopy, but not symplectic isotopy;

(iii) a Lagrangian L in a compact symplectic manifold M which is displaceable under
arbitrarily small symplectic isotopy (that is, for all ϵ > 0, there exists some symplectic
isotopy ϕt such that ϕ1(L) ∩ L = 0 and ∥ϕt∥C∞ ⩽ ϵ for all t) but not displaceable
under any Hamiltonian isotopy;

(iv) a Lagrangian in a compact symplectic manifold M which is displaceable under
Hamiltonian isotopy.

3 State and prove Moser’s theorem on families of symplectic forms on compact
manifolds.

Let d ⩾ 1 and n ⩾ 2. Briefly explain how to deduce that any pair X and X ′

of smooth degree d hypersurfaces in Pn are symplectomorphic. Show that for any such
hypersurface X in Pn, the symplectomorphism group Symp(X,ωFS |X) has a subgroup
isomorphic to

(Z/dZ)n+1/(1, · · · , 1) ∼= (Z/dZ)n.
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4 (a) State the neighbourhood theorem for symplectic submanifolds.

(b) Let (X4, ω) be a symplectic manifold and C be a smooth genus zero symplectic
submanifold of X with C · C = −4. Explain how to symplectically blow-down C.

(c) Let E(1) be the complex surface constructed by blowing up the base points of
a general pencil of cubics. Write a holomorphic map π : E(1) → P1 with connected fibres
and exhibit a holomorphic section of that map. Let C ⊂ E(1) be a smooth, connected
complex curve. Suppose that C ·C = k and that π|C : C → P1 has degree d. What is the
genus of C? Justify your answer.
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