MAMA/137

MAT3 MATHEMATICAL TRIPOS Part III

Thursday 30 May 2024 $-1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 137

MODULAR FORMS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

FS SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Let k be an integer. Write down a formula for the dimension of the space $S_k(\Gamma(1))$ of cuspidal modular forms of weight k and level $\Gamma(1)$.

(b) Consider the function $E_2: \mathfrak{h} \to \mathbb{C}$ defined by the formula

$$E_2(\tau) = 1 - 24 \sum_{n=1}^{\infty} \sigma(n) q^n,$$

where $q = e^{2\pi i \tau}$ and $\sigma(n) = \sum_{d|n} d$. Using the formula $\tau^{-2} E_2(-1/\tau) = E_2(\tau) + \frac{6}{\pi i \tau}$, prove the formula

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24},$$

where $\Delta \in S_{12}(\Gamma(1))$ is the unique cuspidal modular form of weight 12 satisfying $\Delta = q + O(q^2)$ as $q \to 0$. [You may assume that the group $\Gamma(1)$ is generated by the matrices $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.]

(c) Show that $L(\Delta, s) \neq 0$ for all real values of s with s > 0. [You may assume that the Dirichlet series defining $L(\Delta, s)$ is absolutely convergent whenever $\operatorname{Re}(s)$ is sufficiently large, and that $L(\Delta, s)$ admits an analytic continuation to \mathbb{C} .]

2 (a) Define

$$\mathcal{F} = \{ \tau \in \mathfrak{h} \mid |\tau| \ge 1, \operatorname{Re}(\tau) \in [-1/2, 1/2] \}.$$

Prove that every element of \mathfrak{h} is $\Gamma(1)$ -conjugate to an element of \mathcal{F} .

(b) Let $k \ge 0$ be an integer. Define the Petersson inner product $\langle \cdot, \cdot \rangle$ on the space $S_k(\Gamma(1))$ of cuspidal modular forms of weight k and level $\Gamma(1)$, and show that it converges.

(c) Let $k, l \ge 0$ be even integers, and let $f = \sum_{n\ge 1} a_n q^n \in S_k(\Gamma(1)), g = \sum_{n\ge 1} b_n q^n \in S_l(\Gamma(1))$. Show that the Dirichlet series $L(f, g, s) = \sum_{n\ge 1} a_n \overline{b}_n n^{-s}$ converges absolutely when $\operatorname{Re}(s) > 1 + (k+l)/2$. [You may assume there is a constant C > 0 such that $|a_n| \le C n^{k/2}$ and $|b_n| \le C n^{l/2}$ for all $n \ge 1$.]

(d) With the assumptions of (c), suppose further that $k \ge l+6$. Prove the identity

$$\langle f, gG_{k-l} \rangle = \frac{2\zeta(k-l)\Gamma(k-1)}{(4\pi)^{k-1}}L(f, g, k-1),$$

where $G_{k-l} = \sum_{(m,n) \in \mathbb{Z}^2 - 0} (m\tau + n)^{-(k-l)}$ is the usual weight (k-l) Eisenstein series. [You may use any result from lectures provided you state it precisely.] **3** (a) Let k be an integer, and let $\Gamma \leq \Gamma(1)$ be a congruence subgroup. Define what it means for a function $f : \mathfrak{h} \to \mathbb{C}$ to be a modular form of weight k and level Γ .

(b) Let f be a non-zero modular function of weight k and level $\Gamma(1)$. Write down a formula for the number of zeroes and poles of f in $\Gamma(1) \setminus \mathfrak{h}$.

(c) Let $\theta : \mathfrak{h} \to \mathbb{C}$ be defined by $\theta(\tau) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau}$. Show that if $k \in 8\mathbb{N}$ then θ^k is a modular form of weight k/2 and level Γ , where $\Gamma = \Gamma(2) \cup \Gamma(2)S$. [You may use the fact that the group Γ is generated by $T^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. You may use the Poisson summation formula, provided you state it precisely.]

(d) Show that $\theta(\tau) \neq 0$ for all $\tau \in \mathfrak{h}$.

4 (a) (i) Let $k \in \mathbb{Z}$, let $n \in \mathbb{N}$, and let \mathcal{L} denote the set of lattices $\Lambda \leq \mathbb{C}$. Define the space V_k of functions $F : \mathcal{L} \to \mathbb{C}$ of weight k and the n^{th} Hecke operator $T_n : V_k \to V_k$.

(ii) Explain how V_k may be identified with the space W_k of functions $f : \mathfrak{h} \to \mathbb{C}$ that are invariant under the weight k action of $\Gamma(1)$, and how this can be used to define the n^{th} Hecke operator $T_n : W_k \to W_k$.

(b) Let $s \in \mathbb{C}$, $\operatorname{Re}(s) > 1$. The non-holomorphic Eisenstein series $G(\tau, s)$ of parameter s is defined for $\tau \in \mathfrak{h}$ by

$$G(\tau, s) = \sum_{(m,n)\in\mathbb{Z}^2-0} \frac{\operatorname{Im}(\tau)^s}{|m\tau + n|^{2s}}.$$

Prove that $G(\tau, s)$ converges absolutely for all $\tau \in \mathfrak{h}$ and defines an element of W_0 .

(c) Let p be a prime. Show that $G(\tau, s)$ is an eigenvector for the Hecke operator T_p , and compute the eigenvalue.

END OF PAPER

Part III, Paper 137