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1 (a) Let k be an integer. Write down a formula for the dimension of the space
Sk(Γ(1)) of cuspidal modular forms of weight k and level Γ(1).

(b) Consider the function E2 : h → C defined by the formula

E2(τ) = 1− 24
∞∑

n=1

σ(n)qn,

where q = e2πiτ and σ(n) =
∑

d|n d. Using the formula τ−2E2(−1/τ) = E2(τ)+
6

πiτ , prove
the formula

∆ = q

∞∏

n=1

(1− qn)24,

where ∆ ∈ S12(Γ(1)) is the unique cuspidal modular form of weight 12 satisfying
∆ = q + O(q2) as q → 0. [You may assume that the group Γ(1) is generated by the
matrices T = ( 1 1

0 1 ) and S =
(
0 −1
1 0

)
.]

(c) Show that L(∆, s) ̸= 0 for all real values of s with s > 0. [You may assume that
the Dirichlet series defining L(∆, s) is absolutely convergent whenever Re(s) is sufficiently
large, and that L(∆, s) admits an analytic continuation to C.]

2 (a) Define
F = {τ ∈ h | |τ | ⩾ 1,Re(τ) ∈ [−1/2, 1/2]}.

Prove that every element of h is Γ(1)-conjugate to an element of F .

(b) Let k ⩾ 0 be an integer. Define the Petersson inner product ⟨·, ·⟩ on the space
Sk(Γ(1)) of cuspidal modular forms of weight k and level Γ(1), and show that it converges.

(c) Let k, l ⩾ 0 be even integers, and let f =
∑

n⩾1 anq
n ∈ Sk(Γ(1)), g =∑

n⩾1 bnq
n ∈ Sl(Γ(1)). Show that the Dirichlet series L(f, g, s) =

∑
n⩾1 anbnn

−s converges
absolutely when Re(s) > 1 + (k + l)/2. [You may assume there is a constant C > 0 such
that |an| ⩽ Cnk/2 and |bn| ⩽ Cnl/2 for all n ⩾ 1.]

(d) With the assumptions of (c), suppose further that k ⩾ l+6. Prove the identity

⟨f, gGk−l⟩ =
2ζ(k − l)Γ(k − 1)

(4π)k−1
L(f, g, k − 1),

where Gk−l =
∑

(m,n)∈Z2−0(mτ + n)−(k−l) is the usual weight (k − l) Eisenstein series.
[You may use any result from lectures provided you state it precisely.]
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3 (a) Let k be an integer, and let Γ ⩽ Γ(1) be a congruence subgroup. Define what
it means for a function f : h → C to be a modular form of weight k and level Γ.

(b) Let f be a non-zero modular function of weight k and level Γ(1). Write down a
formula for the number of zeroes and poles of f in Γ(1)\h.

(c) Let θ : h → C be defined by θ(τ) =
∑

n∈Z e
πin2τ . Show that if k ∈ 8N then θk is

a modular form of weight k/2 and level Γ, where Γ = Γ(2)∪Γ(2)S. [You may use the fact
that the group Γ is generated by T 2 = ( 1 2

0 1 ) and S =
(
0 −1
1 0

)
. You may use the Poisson

summation formula, provided you state it precisely.]

(d) Show that θ(τ) ̸= 0 for all τ ∈ h.

4 (a) (i) Let k ∈ Z, let n ∈ N, and let L denote the set of lattices Λ ⩽ C. Define the
space Vk of functions F : L → C of weight k and the nth Hecke operator Tn : Vk → Vk.

(ii) Explain how Vk may be identified with the space Wk of functions f : h → C
that are invariant under the weight k action of Γ(1), and how this can be used to define
the nth Hecke operator Tn : Wk → Wk.

(b) Let s ∈ C, Re(s) > 1. The non-holomorphic Eisenstein series G(τ, s) of
parameter s is defined for τ ∈ h by

G(τ, s) =
∑

(m,n)∈Z2−0

Im(τ)s

|mτ + n|2s .

Prove that G(τ, s) converges absolutely for all τ ∈ h and defines an element of W0.

(c) Let p be a prime. Show that G(τ, s) is an eigenvector for the Hecke operator Tp,
and compute the eigenvalue.

END OF PAPER

Part III, Paper 137


