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(a) State and prove a version of Hensel’s Lemma and use it to show that there is an
isomorphism

QX /(QF)? = 7/3Z x 7./31.
(b) Consider the equation
X? =a* +4€QX]

where a € Q2. Show that for |a|s sufficiently large, this equation has a solution in Qs.

2 Let K be a local field and L/K a finite separable extension.

(a) Define what it means for L/K to be unramified, totally ramified and tamely
ramified. Show that for any extension L/K, there is a subextension Ky/K such that
Ky/K is unramified and L/Kj is totally ramified.

(b) Now let L/K be Galois with Galois group G. Define the higher ramification
groups G5(L/K) for s € Z>_;. Assume that O, = Og|a] for some o € Ok with minimal
polynomial f(X) € Og[X], and let vz, denote the normalized valuation on L. Show that
Gs(L/K) ={o € Glvp(o(a) — ) = s + 1}, and we have

or(fl@) = Y vrlo(a) —a)= Y (IG5 - 1).

1750'€G 56220

Deduce that L/K is unramified if and only if f'(«) € Of and that L/K is tamely ramified
if and only vz (f'(a)) = e x — 1. [You may use standard facts about higher ramification
groups without proof.]

3 Let K be a finite extension of Q, with residue field £ = F, and 7 € O a uniformizer.
Let K be an algebraic closure of K and m C Oz the maximal ideal.

(a) Let f be a Lubin—Tate series for w. Define the Lubin-Tate formal group law
F associated to f, and show that if g is another Lubin-Tate series for 7, there is an
isomorphism Fy = F; of formal Og-modules.

[You may assume the key lemma on ezistence and uniqueness of power series
associated to Lubin—Tate series provided it is stated clearly.]

(b) For n > 1, define the n"-torsion points pf, C W associated to K and show that
[t is a free module of rank one over Ok /7" Ok.

(¢) By considering appropriate Lubin—Tate series for p, show that

Qp( p_\l/jp) = Qp(gp)-
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4 Let K be a complete discretely valued field with perfect residue field k of charac-
teristic p > 0, and let m € Ok be a uniformizer.

(a) Show that there exists a unique multiplicative map
H k— 0 K
such that [a] = ¢ mod = for all a € k. Hence show that every x € O can be written as
a power series x = Y o0 [a;]7, a; € k.

(b) Show that if charK = 0 and k is finite, there is an isomorphism (1 + 7"O) =
(Ok,+) for sufficiently large r.

Let K = Q3((3). Show that there is an isomorphism Oy = ug x Ok, where pg is
the group of 6% roots of unity.

Let K be an algebraic number field.

(a) State Ostrowski’s Theorem. For p a prime, show that the absolute values on
K extending |.|, are (up to equivalence) given by |.|, for p a prime ideal of O with
pPNZ=(p)

Show that there is a natural isomorphism

K ©g Q) = HKp.
plp

(b) Let K = Q(+/2). Show that there are two prime ideals p1,ps in O dividing
the prime 5. Are either of these ramified?
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