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1

(a) State and prove a version of Hensel’s Lemma and use it to show that there is an
isomorphism

Q×
3 /(Q

×
3 )

3 ∼= Z/3Z× Z/3Z.

(b) Consider the equation

X2 = a4 + 4 ∈ Q2[X]

where a ∈ Q2. Show that for |a|2 sufficiently large, this equation has a solution in Q2.

2 Let K be a local field and L/K a finite separable extension.

(a) Define what it means for L/K to be unramified, totally ramified and tamely
ramified. Show that for any extension L/K, there is a subextension K0/K such that
K0/K is unramified and L/K0 is totally ramified.

(b) Now let L/K be Galois with Galois group G. Define the higher ramification
groups Gs(L/K) for s ∈ Z⩾−1. Assume that OL = OK [α] for some α ∈ OK with minimal
polynomial f(X) ∈ OK [X], and let vL denote the normalized valuation on L. Show that
Gs(L/K) = {σ ∈ G|vL(σ(α)− α) ⩾ s+ 1}, and we have

vL(f
′(α)) =

∑

1̸=σ∈G
vL(σ(α)− α) =

∑

s∈Z⩾0

(|Gs| − 1).

Deduce that L/K is unramified if and only if f ′(α) ∈ O×
L and that L/K is tamely ramified

if and only vL(f
′(α)) = eL/K − 1. [You may use standard facts about higher ramification

groups without proof.]

3 LetK be a finite extension ofQp with residue field k = Fq and π ∈ OK a uniformizer.
Let K be an algebraic closure of K and m ⊂ OK the maximal ideal.

(a) Let f be a Lubin–Tate series for π. Define the Lubin–Tate formal group law
Ff associated to f , and show that if g is another Lubin–Tate series for π, there is an
isomorphism Ff

∼= Fg of formal OK-modules.

[You may assume the key lemma on existence and uniqueness of power series
associated to Lubin–Tate series provided it is stated clearly.]

(b) For n ⩾ 1, define the πn-torsion points µf,n ⊂ m associated to K and show that
µf,n is a free module of rank one over OK/πnOK .

(c) By considering appropriate Lubin–Tate series for p, show that

Qp(
p−1
√−p) = Qp(ζp).
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4 Let K be a complete discretely valued field with perfect residue field k of charac-
teristic p > 0, and let π ∈ OK be a uniformizer.

(a) Show that there exists a unique multiplicative map

[.] : k → OK

such that [a] ≡ a mod π for all a ∈ k. Hence show that every x ∈ OK can be written as
a power series x =

∑∞
i=0[ai]π

i, ai ∈ k.

(b) Show that if charK = 0 and k is finite, there is an isomorphism (1 + πrOK) ∼=
(OK ,+) for sufficiently large r.

Let K = Q3(ζ3). Show that there is an isomorphism O×
K

∼= µ6 × OK , where µ6 is
the group of 6th roots of unity.

5

Let K be an algebraic number field.

(a) State Ostrowski’s Theorem. For p a prime, show that the absolute values on
K extending |.|p are (up to equivalence) given by |.|p for p a prime ideal of OK with
p ∩ Z = (p).

Show that there is a natural isomorphism

K ⊗Q Qp
∼=

∏

p|p
Kp.

(b) Let K = Q( 3
√
2). Show that there are two prime ideals p1, p2 in OK dividing

the prime 5. Are either of these ramified?
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