MAMA/136, NST3AS/136, MAAS/136

MAT3 MATHEMATICAL TRIPOS Part III

Monday 3 June 2024 $-9{:}00~\mathrm{pm}$ to 12:00 pm

PAPER 136

LOCAL FIELDS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{1}$

(a) State and prove a version of Hensel's Lemma and use it to show that there is an isomorphism

$$\mathbb{Q}_3^{\times}/(\mathbb{Q}_3^{\times})^3 \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}.$$

(b) Consider the equation

$$X^2 = a^4 + 4 \in \mathbb{Q}_2[X]$$

where $a \in \mathbb{Q}_2$. Show that for $|a|_2$ sufficiently *large*, this equation has a solution in \mathbb{Q}_2 .

2 Let K be a local field and L/K a finite separable extension.

(a) Define what it means for L/K to be unramified, totally ramified and tamely ramified. Show that for any extension L/K, there is a subextension K_0/K such that K_0/K is unramified and L/K_0 is totally ramified.

(b) Now let L/K be Galois with Galois group G. Define the higher ramification groups $G_s(L/K)$ for $s \in \mathbb{Z}_{\geq -1}$. Assume that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ for some $\alpha \in \mathcal{O}_K$ with minimal polynomial $f(X) \in \mathcal{O}_K[X]$, and let v_L denote the normalized valuation on L. Show that $G_s(L/K) = \{\sigma \in G | v_L(\sigma(\alpha) - \alpha) \geq s + 1\}$, and we have

$$v_L(f'(\alpha)) = \sum_{1 \neq \sigma \in G} v_L(\sigma(\alpha) - \alpha) = \sum_{s \in \mathbb{Z}_{\geq 0}} (|G_s| - 1).$$

Deduce that L/K is unramified if and only if $f'(\alpha) \in \mathcal{O}_L^{\times}$ and that L/K is tamely ramified if and only $v_L(f'(\alpha)) = e_{L/K} - 1$. [You may use standard facts about higher ramification groups without proof.]

3 Let K be a finite extension of \mathbb{Q}_p with residue field $k = \mathbb{F}_q$ and $\pi \in \mathcal{O}_K$ a uniformizer. Let \overline{K} be an algebraic closure of K and $\overline{\mathfrak{m}} \subset \mathcal{O}_{\overline{K}}$ the maximal ideal.

(a) Let f be a Lubin–Tate series for π . Define the Lubin–Tate formal group law \mathcal{F}_f associated to f, and show that if g is another Lubin–Tate series for π , there is an isomorphism $\mathcal{F}_f \cong \mathcal{F}_g$ of formal \mathcal{O}_K -modules.

[You may assume the key lemma on existence and uniqueness of power series associated to Lubin-Tate series provided it is stated clearly.]

(b) For $n \ge 1$, define the π^n -torsion points $\mu_{f,n} \subset \overline{\mathfrak{m}}$ associated to K and show that $\mu_{f,n}$ is a free module of rank one over $\mathcal{O}_K/\pi^n \mathcal{O}_K$.

(c) By considering appropriate Lubin–Tate series for p, show that

$$\mathbb{Q}_p(\sqrt[p-1]{-p}) = \mathbb{Q}_p(\zeta_p).$$

Part III, Paper 136

4 Let K be a complete discretely valued field with perfect residue field k of characteristic p > 0, and let $\pi \in \mathcal{O}_K$ be a uniformizer.

(a) Show that there exists a unique multiplicative map

$$[.]: k \to \mathcal{O}_K$$

such that $[a] \equiv a \mod \pi$ for all $a \in k$. Hence show that every $x \in \mathcal{O}_K$ can be written as a power series $x = \sum_{i=0}^{\infty} [a_i]\pi^i$, $a_i \in k$.

(b) Show that if charK = 0 and k is finite, there is an isomorphism $(1 + \pi^r \mathcal{O}_K) \cong (\mathcal{O}_K, +)$ for sufficiently large r.

Let $K = \mathbb{Q}_3(\zeta_3)$. Show that there is an isomorphism $\mathcal{O}_K^{\times} \cong \mu_6 \times \mathcal{O}_K$, where μ_6 is the group of 6th roots of unity.

$\mathbf{5}$

Let K be an algebraic number field.

(a) State Ostrowski's Theorem. For p a prime, show that the absolute values on K extending $|.|_p$ are (up to equivalence) given by $|.|_p$ for \mathfrak{p} a prime ideal of \mathcal{O}_K with $\mathfrak{p} \cap \mathbb{Z} = (p)$.

Show that there is a natural isomorphism

$$K \otimes_{\mathbb{Q}} \mathbb{Q}_p \cong \prod_{\mathfrak{p}|p} K_{\mathfrak{p}}.$$

(b) Let $K = \mathbb{Q}(\sqrt[3]{2})$. Show that there are two prime ideals $\mathfrak{p}_1, \mathfrak{p}_2$ in \mathcal{O}_K dividing the prime 5. Are either of these ramified?

END OF PAPER