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a. Define the right angled Artin group associated to a graph Γ and its corresponding
Salvetti complex.

b. Give sufficient conditions, in terms of the defining graph Γ, for the right angled Artin
group G(Γ) to be a free product or a direct product. Describe what this means for the
structure of the corresponding Salvetti complexes.

c. Prove that the link of the vertex in the Salvetti complex of a right angled Artin group
is a cycle if and only if Γ is an edge.

d. Show that a surface of genus 2 cannot be homeomorphic to a hyperplane in the Salvetti
complex of a right angled Artin group (you may quote, without proof, any result from
the example sheets).

e. Prove that if G(Γ) is a right angled Artin group and Γ′ is a full subgraph of Γ, then
G(Γ′) is isomorphic to a subgroup of G(Γ).
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2 Let G be a group, (S,W) be a wallspace on which G acts, and C be the dual
CAT(0) cube complex to (S,W).

a. Define what it means for G to be cubulated and cocompactly cubulated.

b. State a criterion guaranteeing that the action of G on C is metrically proper.

c. State and prove a sufficient and necessary condition for the action on C to be cocompact.

d. The Coxeter group
W = ⟨r, s, t|s2, t2, r2, (st)3, (rs)3, (rt)3⟩

is isomorphic to the group of isometries of the Euclidean plane E2 tessellated by
equilateral triangles, generated by reflections on 3 pairwise non-parallel lines, as
partially shown in Figure 1. By defining a wallspace structure on E2 where the walls
are given by the lines in the tessellation, we obtain an action of W on a CAT(0) cube
complex C. Describe C and prove that the action of W on C is not cocompact.

Figure 1: W is generated by reflection on three pairwise-crossing lines; a portion of the
tessellation of E2 is shown.
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a. Define what it means for a group G to be residually finite. Prove that free groups are
residually finite.

b. Show that a subcomplex of a product of two graphs is special.

c. Determine whether the cube complex below is special or not. Prove your assertion.

d. Recall that a group G is simple if the only normal subgroups of G are the trivial
subgroup and G itself. Prove that if a compact, connected, non-positively curved cube
complex X is special, and π1X is not finite, then π1X cannot be simple.

END OF PAPER
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