MAMA/133, NST3AS/133, MAAS/133

MAT3 MATHEMATICAL TRIPOS Part III

Thursday 6 June 2024 $\ 1:30~\mathrm{pm}$ to 4:30 pm

PAPER 133

GEOMETRIC GROUP THEORY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 In this question, x^y denotes the conjugate $y^{-1}xy$. Consider the group

$$G = \langle a, t \mid (a^t)a(a^t)^{-1}a^{-2} \rangle.$$

(a) Let $f: G \to Q$ be a surjective homomorphism to a finite group. By considering the order of f(a), prove that Q is cyclic. [You may use the following consequence of Fermat's little theorem without proof: if n is a positive integer and n divides $2^n - 1$, then n = 1.]

(b) Prove that G is infinite and non-abelian.

(c) Prove that the inclusion of $\langle a \rangle$ into G is not a quasi-isometric embedding.

2 Consider the group $SL_2(\mathbb{Z})$ of 2-by-2 matrices of determinant 1 with integer coefficients. You may assume that $SL_2(\mathbb{Z})$ can be written as an amalgamated free product $\langle A \rangle *_{\langle A \rangle \cap \langle B \rangle} \langle B \rangle$, where

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

(a) Draw a picture of the Bass–Serre tree T corresponding to the given decomposition of $SL_2(\mathbb{Z})$.

(b) Prove that any isometry of T either fixes a point or translates a line. Deduce that every element of $SL_2(\mathbb{Z})$ of finite order is conjugate to either a power of A or a power of B.

(c) Prove that $SL_2(\mathbb{Z})$ has a free subgroup of finite index. [*Hint: consider the quotient of* $SL_2(\mathbb{Z})$ *induced by taking residues modulo 3.*]

3 Consider a homomorphism of groups $f: G \to H$, with H finitely generated.

(a) Suppose that f is injective and $|H : f(G)| < \infty$. Prove that G is finitely generated and quasi-isometric to H.

(b) Suppose instead that f is surjective and ker f is finite. Prove that G is finitely generated and quasi-isometric to H.

(c) Show that the group

$$\Gamma = \langle a, b, k \mid a^4, b^4, (abk)^4, k^3, aka^{-1}k, bkb^{-1}k \rangle$$

is quasi-isometric to the hyperbolic plane \mathbb{H}^2 .

4 Let X be a δ -hyperbolic metric space.

(a) Let $Q \subseteq X$ be a geodesic quadrilateral. Prove that each side is contained in the closed 2δ -neighbourhood of the remaining three sides.

(b) Consider a subspace $Y \subseteq X$ that is *convex*, meaning that any geodesic with both endpoints in Y is contained in Y. Fix a point $x \in X$. Suppose that $y_1, y_2 \in Y$ both have the property that $d(x, y_i) \leq d(x, y)$ for all $y \in Y$. Prove that $d(y_1, y_2) \leq 4\delta$.

(c) Consider convex subspaces $Y, Z \subseteq X$, such that $d(y, z) > 2\delta$ for all $y \in Y$ and $z \in Z$. Let z_1, z_2 be points in Z, and suppose $y_1, y_2 \in Y$ have the property that $d(y_i, z_i) \leq d(y, z_i)$ for all $y \in Y$ and i = 1, 2. Prove that $d(y_1, y_2) \leq 8\delta$.

END OF PAPER