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1 In this question, xy denotes the conjugate y−1xy. Consider the group

G = ⟨a, t | (at)a(at)−1a−2⟩ .

(a) Let f : G → Q be a surjective homomorphism to a finite group. By considering
the order of f(a), prove that Q is cyclic. [You may use the following consequence of
Fermat’s little theorem without proof: if n is a positive integer and n divides 2n − 1, then
n = 1.]

(b) Prove that G is infinite and non-abelian.

(c) Prove that the inclusion of ⟨a⟩ into G is not a quasi-isometric embedding.

2 Consider the group SL2(Z) of 2-by-2 matrices of determinant 1 with integer
coefficients. You may assume that SL2(Z) can be written as an amalgamated free product
⟨A⟩ ∗⟨A⟩∩⟨B⟩ ⟨B⟩, where

A =

(
0 1
−1 1

)
and B =

(
0 1
−1 0

)
.

(a) Draw a picture of the Bass–Serre tree T corresponding to the given decomposi-
tion of SL2(Z).

(b) Prove that any isometry of T either fixes a point or translates a line. Deduce
that every element of SL2(Z) of finite order is conjugate to either a power of A or a power
of B.

(c) Prove that SL2(Z) has a free subgroup of finite index. [Hint: consider the
quotient of SL2(Z) induced by taking residues modulo 3.]

3 Consider a homomorphism of groups f : G → H, with H finitely generated.

(a) Suppose that f is injective and |H : f(G)| < ∞. Prove that G is finitely
generated and quasi-isometric to H.

(b) Suppose instead that f is surjective and ker f is finite. Prove that G is finitely
generated and quasi-isometric to H.

(c) Show that the group

Γ = ⟨a, b, k | a4, b4, (abk)4, k3, aka−1k, bkb−1k⟩

is quasi-isometric to the hyperbolic plane H2.
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4 Let X be a δ-hyperbolic metric space.

(a) Let Q ⊆ X be a geodesic quadrilateral. Prove that each side is contained in the
closed 2δ-neighbourhood of the remaining three sides.

(b) Consider a subspace Y ⊆ X that is convex, meaning that any geodesic with
both endpoints in Y is contained in Y . Fix a point x ∈ X. Suppose that y1, y2 ∈ Y both
have the property that d(x, yi) ⩽ d(x, y) for all y ∈ Y . Prove that d(y1, y2) ⩽ 4δ.

(c) Consider convex subspaces Y, Z ⊆ X, such that d(y, z) > 2δ for all y ∈ Y
and z ∈ Z. Let z1, z2 be points in Z, and suppose y1, y2 ∈ Y have the property that
d(yi, zi) ⩽ d(y, zi) for all y ∈ Y and i = 1, 2. Prove that d(y1, y2) ⩽ 8δ.
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