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(a) Show that if G is a triangle-free graph with n vertices and maximum degree d,

α(G) ⩾ cn log d

d

for a constant c > 0. Here α(G) denotes the independence number of G.

(b) Let G be a graph with the property that for all x ∈ V (G) the graph induced on
the neighbourhood of x has maximum degree at most 1. That is, ∆(G[N(x)]) ⩽ 1 for all
x ∈ V (G). Write n = |V (G)| and d = ∆(G). Show that there is a constant c > 0 so that

α(G) ⩾ cn log d

d
.

(c) For graphs H,K, let r(H,K) denote the smallest n so that every red/blue
colouring of E(Kn) contains either a blue copy of H or a red copy of K. Let H be the
graph on {1, . . . , 4} defined by E(H) = {{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}}. Show that
r(H,Kk) ⩽ ck2/ log k for some constant c > 0.

2

(a) For r ⩾ 2, define the r-uniform hypergraph Ramsey number R(r)(k). Show that
there is a constant c > 0 for which R(3)(k) ⩾ 2ck

2
.

(b) Prove that there is a constant c > 0 so that R(3)(k) ⩽ 22
ck
.

(c) Let H be the 3-uniform hypergraph with V (H) = {1, 2, 3, 4} and E(H) =

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}. Show that there is a constant c > 0 so that r(H,K
(3)
k ) ⩽ kck.

Recall that for any r-uniform hypergraphs H,K, r(H,K) denotes the smallest n so

that every red/blue colouring of K
(r)
n either contains a blue copy of H or a red copy of

K.
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(a) For s, k ⩾ 1 and a graph G, define what it means for R ⊆ V (G) to be (s, k)-rich.

Now let G be a graph with |G| = n and e(G) = m. Let r, s, k, t ⩾ 1 be such that

(2m)t

n2t−1
−
(
n

s

)(
k

n

)t

⩾ r.

Show that there exists an (s, k)-rich set R ⊆ V (G), with |R| ⩾ r.

(b) Let H be a bipartite graph on k vertices with maximum degree d. Let G be a
graph, and let R ⊂ V (G) be a (d, k)-rich set in G with |R| ⩾ k. Show that H ⊂ G.

(c) Let H be a bipartite graph on k vertices with maximum degree d. Using the
above, show that r(H) ⩽ k1+ε for every ε > 0, provided k is sufficiently large depending
on d and ε.

4

(a) State the regularity lemma. Be sure to include the definition of an ε-uniform
pair.

(b) Using the regularity lemma, show that if H is a graph with chromatic number
3, then

lim
n→∞

ex(n,H)(
n
2

) =
1

2
.

(c) For graphs G,H, we write G → H if every red/blue colouring of the edges of G
contains a monochromatic copy of H. Let G ∼ G(n, 1/2). Show that

lim
n→∞

P(G → C5) = 1.

[For any of the parts you may use Ramsey’s theorem, Turán’s theorem or the
Chernoff inequality without proof, so long as they are stated correctly.]
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