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(i) State and prove Plünnecke’s inequality.

Let G be an abelian group.

(ii) Given finite sets A,B ⊆ G, show that there exists a set X ⊆ B of size |X| ⩽
2|A + B|/|A| − 1 such that for every b ∈ B, there are more than |A|/2 triples
(x, a, a′) ∈ X ×A×A such that b = a− a′ + x.

Deduce that B −B ⊆ A−A+X −X.

(iii) Given a real number K ⩾ 1, we say that a set H ⊆ G is a K-approximate group if
it is symmetric (i.e. H = −H), contains the additive identity, and H +H can be
covered by at most K translates of H.

Show that if |A + A| ⩽ K|A|, then there exists a constant C > 0 and a CKC-
approximate group H ⊆ G such that |H| ⩽ CKC |A| and A ⊆ H + x for all x ∈ A.
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Let A ⊆ Fn
2 be a set of density α > 0, and let β > 0 denote the density of

B = Fn
2 \ (A+A).

(i) Define Specρ(1A) for ρ > 0, and state Chang’s theorem.

(ii) By considering the inner product ⟨1A ∗ 1A, 1B⟩ or otherwise, show that there is a
subspace V ⩽ Fn

2 of codimension O(α−2 log(β−1)) such that

∑

t∈V ⊥

|1̂A(t)|2 ⩾ 3α2/2.

(iii) Let 1 ⩽ k ⩽ n be an integer, and let H ⩽ Fn
2 be a subspace of dimension k. By

considering Ex1B ∗ µH(x) or otherwise, show that if β < 2−k, then A+ A contains
a coset of H.

(iv) Deduce that if 1 ⩽ k ⩽ n, then either A + A contains a coset of a subspace H of
dimension k, or there exists a subspace V of codimension O(α−2k) such that

∥1A ∗ µV ∥∞ ⩾ 3α/2.

(v) Conclude that there exists a constant C > 0 such that A+ A contains a coset of a
subspace of dimension at least Cα2n.
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Let G be a finite abelian group. For x ∈ G, let τx denote the shift-by-x operator. That
is, for any function g : G → C, τxg(y) = g(y + x) for all y ∈ G.

(i) State Croot and Sisask’s almost-periodicity result.

Let A ⊆ G be a subset of density α > 0.

(ii) Show that for all ϵ > 0 and all integers k ⩾ 1 and p ⩾ 2, there is a set X of size
|X| ⩾ αO(ϵ−2k2p)|G| such that

∥τx(1−A ∗ µA)− 1−A ∗ µA∥p ⩽ ϵ

for all x ∈ kX − kX.

(iii) Suppose instead that there is a set Y of size |Y | ⩾ αO(ϵ−2k2)|G| such that

∥τy(1−A ∗ µA)− 1−A ∗ µA∥∞ ⩽ ϵ

for all y ∈ kY − kY . Show that

∥1−A ∗ µA ∗ µ− 1−A ∗ µA∥∞ ⩽ ϵ,

where µ = µ
(k)
Y ∗ µ(k)

−Y and µ
(k)
Y denotes the k-fold convolution of µY with itself.

(iv) Let Y and µ be as in (iii). By making appropriate choices of ϵ and k, show that
there exists a Bohr set B = B(Λ, 1/(6|Λ|)) with Λ ⊆ Ĝ a dissociated set of size
|Λ| = O(log(α−1)) such that for any y ∈ B and any x ∈ G,

|1−A ∗ µA ∗ µ(x+ y)− 1−A ∗ µA ∗ µ(x)| ⩽ 1/3.

Conclude that for any y ∈ B and any x ∈ G,

|1−A ∗ µA(x+ y)− 1−A ∗ µA(x)| ⩽ 2/3.

By making an appropriate choice of x, deduce that A−A contains B.
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(i) State Szemerédi’s theorem on 4-term arithmetic progression in subsets of Fn
p with

p ⩾ 5.

(ii) Outline why the Fourier-analytic method used to prove Meshulam’s theorem does
not suffice to obtain Szemerédi’s theorem. [You do not need to explain how to
overcome this obstacle, or perform any detailed calculations.]

Let p ⩾ 5 be a prime, let A ⊆ Fn
p and let η > 0.

(iii) Show that if A contains at least η|A|2 3-term arithmetic progressions, then it
contains at least η2|A|3 additive quadruples.

(iv) Show that there exists a constant C = C(η) ⩾ 1 such that if A ⊆ Fn
p has size

|A| ⩾ C and contains at least η|A|2 3-term arithmetic progressions, then A contains
a non-trivial 4-term arithmetic progression.

[You may use any theorems from lectures without proof provided they are stated
clearly.]
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