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(a) Define operations F1, F2 and F3 as follows: F1(x, y) = {x, y}, F2(x, y) =
⋃
x,

F3(x, y) = x \ y. Explicitly find a term G built from the symbols F1,F2 and F3

such that for any sets a, b and c,

G(a, b, c) = (a ∪ {b}) ∩ c.

(b) Show that the constructible universe L satisfies Replacement in the following form:

For every formula φ,
∀a∀u (∀x ∈ a ∃!y φ(x, y, u) → ∃b∀x ∈ a ∃y ∈ b φ(x, y, u)).

(c) Suppose that V = L. Show that Lω1 = Hℵ1 .

[You may use without proof that for every ordinal α, Lα is a transitive set and
|Lα| = |α|.]

2

(a) Fix sets I and J and a regular cardinal κ. Give definitions of the following partial
orders, explicitly defining the set, the order, and the maximal element.

(i) Fn(I, J),

(ii) Fnκ(I, J).

(b) Let J be a countable set and I a non-empty set. Show that Fn(I, J) has the
countable chain condition.

(c) Let M be a countable transitive model of ZFC, let P = Fn(ω, 2) and let G by
P-generic over M . Let c =

⋃
G and let d : ω → 2 be the function defined by

d(n) = c(2n). Show that there is some P-generic filter H overM such that d =
⋃
H.
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(a) State the forcing theorem.

(b) Suppose that the forcing theorem holds for a formula φ. Prove that the forcing
theorem holds for the formula ∃xφ(x).

(c) Call a function f : ω1 → ω1 normal on ω1 if it is a total, strictly increasing function
and for all limit ordinals δ ∈ ω1, f(δ) = sup{f(α) : α ∈ δ}. Let B be the partial
order whose conditions are finite partial functions p : ω1 → ω1 such that there is a
normal function f : ω1 → ω1 with p ⊆ f . Let the ordering on B be given by reverse
inclusion, that is q ⩽ p iff q ⊇ p.

Suppose thatM is a countable transitive model of ZFC and let G be B-generic over
M . Show that, in M [G], F =

⋃
G is a normal function on (ω1)

M .

[A function is total if it is defined on every element of the domain.]

4

(a) State the Reflection Theorem.

(b) Suppose that M is a countable transitive model of ZFC + V = L and let G be a
Fn(ω, ω1)-generic filter overM . Give explicit examples of formulas φ1, φ2 such that

(i) φ1 is upwards absolute but not downwards absolute between M and M [G],

(ii) φ2 is downwards absolute but not upwards absolute between M and M [G].

You should give a full argument for why your chosen formulas are downwards and
upwards absolute respectively.

[You may assume that the following terms are absolute: function, injection, surjec-
tion, x = dom(f), x = ran(f), α is an ordinal, x = ω.]

(c) Show that for any formula φ the following are equivalent:

(i) φ is ∆ZF
1 ,

(ii) For some finite subset T of axioms of ZF, ZF proves that φ is absolute for
any transitive class M such that M |= ψ for all ψ ∈ T .
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