MAMA/126, NST3AS/126, MAAS/126

MAT3 MATHEMATICAL TRIPOS Part III

Tuesday 4 June 2024 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 126

ABELIAN VARIETIES

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Let $A \to B$ be a ring homomorphism. Define the module $\Omega_{B/A}$ of differentials.

Let $A \to B \to C$ be ring homomorphisms. Write down the first exact sequence of differentials for C/B/A.

Suppose $B \to C$ is surjective, with kernel *I*. Write down the second exact sequence for C/B/A.

Let L/K be a finite extension of fields. Show that $\Omega_{L/K} = 0$ if and only if L/K is separable.

Suppose that char(K) = p > 0. Compute $\Omega_{L/K}$ when:

$$L = K(a)$$
, where $a^p \notin K$, $a^{p^2} \in K$
 $L = K(a, b)$, where $a \notin K$, $b \notin K(a)$ and a^p , $b^p \in K$.

Let k be a field. Compute $\Omega_{X/Y}$ for each of the following morphisms $f: X \to Y$:

- (i) $X = \operatorname{Spec} k[x, y]/(y^2 x) \to Y = \operatorname{Spec} k[t], f^{\#}(t) = x$
- (ii) $X = \operatorname{Spec} k[x] \to Y = \operatorname{Spec} k[u, v] / (u^3 v^2), f^{\#}(u) = x^2, f^{\#}(v) = x^3$
- (iii) $X = \operatorname{Spec} k[x, y]/(xy) \to Y = \operatorname{Spec} k[t], f^{\#}(t) = x$

and in each case write down the support of $\Omega_{X/Y}$.

(b) Let $f: X \to Y$ be a morphism of schemes. What does it mean to say that f is flat?

Which of the morphisms (i)–(iii) are flat? Justify your answers.

3

2 In this question, all schemes are assumed to be separated and Noetherian.

(i) Let $f: X \to Y$ be an affine morphism of schemes, and \mathcal{F} a quasicoherent \mathcal{O}_X module. Show that for every $p \ge 0$, $H^p(X, \mathcal{F}) = H^p(Y, f_*\mathcal{F})$.

(ii) State the Mayer–Vietoris theorem in sheaf cohomology.

Let $X = \bigcup_{i=1}^{m} U_i$ be an open cover of a scheme X and \mathcal{F} an abelian sheaf on X. Suppose that for every nonempty subset $\{i_1, \ldots, i_r\} \subset \{1, \ldots, m\}$ and every $p \ge 0$, $H^p(U_{i_1} \cap \cdots \cap U_{i_r}, \mathcal{F}) = 0$. Show that for every $p \ge 0$, $H^p(X, \mathcal{F}) = 0$.

(iii) Let A be a reduced Noetherian ring, and $f: X \to \operatorname{Spec} A$ a proper morphism. Suppose that \mathcal{F} is a coherent \mathcal{O}_X -module, flat over $\operatorname{Spec} A$, and $n \ge 0$ an integer such that $H^p(X, \mathcal{F}) = 0$ for every p > n.

State a theorem about the existence of a complex of locally free A-modules computing the cohomology of \mathcal{F} . Use it to show that $H^n(X, \mathcal{F}) = 0$ if and only if, for every $s \in \operatorname{Spec} A$, $H^n(X_s, \mathcal{F}(s)) = 0$.

(iv) Let $f: X \to Y$ be a proper morphism of schemes, with Y reduced, and \mathcal{F} a coherent \mathcal{O}_X -module, flat over Y. Suppose that for every $y \in Y$ and every $p \ge 0$, $H^p(X_y, \mathcal{F}(y)) = 0$. Show that for every $p \ge 0$, $H^p(X, \mathcal{F}) = 0$.

3 (a) What is a group scheme over a field k?

Let G and H be group schemes over k. What is a homomorphism of group schemes from H to G?

Suppose that G and H are commutative. Let $\operatorname{Hom}_k(H, G)$ be the set of homomorphisms from H to G, and for any k-scheme S, let G(S) be the group of S-valued points of G.

Show that $\operatorname{Hom}_k(H, G)$ is a subgroup of the group G(H), and that for every kalgebra R, every $f, g \in \operatorname{Hom}_k(H, G)$ and every $x \in H(R), f_R(x) + g_R(x) = (f+g)_R(x)$. Show also that for every integer $n \ge 1, nf = f \circ [n]_H = [n]_G \circ f$, where $[n]_G, [n]_H$ are the multiplication-by-n morphisms on G and H.

(b) State a version of Mumford's Rigidity Lemma.

Let k be an algebraically closed field. Suppose that X and Y are abelian varieties over k, and that S is a k-variety.

Let $f: X \times S \to Y$ be a morphism such that f(e, s) = e for every $s \in S(k)$. Show that there exists $g \in \operatorname{Hom}_k(X, Y)$ such that for every $s \in S(k)$, $f|_{X \times s} = g$.

Part III, Paper 126

[TURN OVER]

4 Let X be an abelian variety over an algebraically closed field k.

(i) State the Theorem of the Square.

(ii) Define the map $\phi_{\mathcal{L}} \colon X(k) \to \operatorname{Pic}(X)$ for a line bundle \mathcal{L} on X, and show that it is a homomorphism.

Show that $\phi_{\mathcal{L}\otimes\mathcal{M}}(x) = \phi_{\mathcal{L}}(x)\phi_{\mathcal{M}}(x)$ and $\phi_{\mathcal{L}\otimes n}(x) = \phi_{\mathcal{L}}(nx)$ for any $\mathcal{L}, \mathcal{M} \in \operatorname{Pic}(X)$, $x \in X(k)$, and $n \ge 1$.

Deduce that the quotient $\operatorname{Pic}(X)/\operatorname{Pic}^{0}(X)$ is torsion-free, where $\operatorname{Pic}^{0}(X) = \{\mathcal{L} \in \operatorname{Pic}(X) \mid \phi_{\mathcal{L}} \text{ is trivial}\}$, and that for every $\mathcal{L} \in \operatorname{Pic}(X), \operatorname{im}(\phi_{\mathcal{L}}) \subset \operatorname{Pic}^{0}(X)$.

(iii) Let $\Lambda(\mathcal{L}) = m^* \mathcal{L} \otimes pr_1^* \mathcal{L}^{\vee} \otimes pr_2^* \mathcal{L}^{\vee} \in \operatorname{Pic}(X \times X)$. Show that $\mathcal{L} \in \operatorname{Pic}^0(X)$ if and only if $\Lambda(\mathcal{L})$ is trivial.

(iv) Let Y be any k-variety, and $f, g: Y \to X$ morphisms. Let f + g denote their sum in the group X(Y).

Show that if $\mathcal{L} \in \operatorname{Pic}^{0}(X)$ then $(f+g)^{*}\mathcal{L} \simeq f^{*}\mathcal{L} \otimes g^{*}\mathcal{L}$ in $\operatorname{Pic}(Y)$. Deduce that if $\mathcal{L} \in \operatorname{Pic}^{0}(X)$, then $i^{*}\mathcal{L} \simeq \mathcal{L}^{\vee}$ and for every $n \in \mathbb{Z}$, $[n]^{*}\mathcal{L} \simeq \mathcal{L}^{\otimes n}$.

By considering $\mathcal{L}^{\otimes 2}$, show that if $i^*\mathcal{L} \simeq \mathcal{L}^{\vee}$ then $\mathcal{L} \in \operatorname{Pic}^0(X)$.

END OF PAPER