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1 (a) Let A → B be a ring homomorphism. Define the module ΩB/A of differentials.

Let A → B → C be ring homomorphisms. Write down the first exact sequence of
differentials for C/B/A.

Suppose B → C is surjective, with kernel I. Write down the second exact sequence
for C/B/A.

Let L/K be a finite extension of fields. Show that ΩL/K = 0 if and only if L/K is
separable.

Suppose that char(K) = p > 0. Compute ΩL/K when:

L = K(a), where ap /∈ K, ap
2 ∈ K

L = K(a, b), where a /∈ K, b /∈ K(a) and ap, bp ∈ K.

Let k be a field. Compute ΩX/Y for each of the following morphisms f : X → Y :

(i) X = Spec k[x, y]/(y2 − x) → Y = Spec k[t], f#(t) = x

(ii) X = Spec k[x] → Y = Spec k[u, v]/(u3 − v2), f#(u) = x2, f#(v) = x3

(iii) X = Spec k[x, y]/(xy) → Y = Spec k[t], f#(t) = x

and in each case write down the support of ΩX/Y .

(b) Let f : X → Y be a morphism of schemes. What does it mean to say that f is
flat?

Which of the morphisms (i)–(iii) are flat? Justify your answers.
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2 In this question, all schemes are assumed to be separated and Noetherian.

(i) Let f : X → Y be an affine morphism of schemes, and F a quasicoherent OX -
module. Show that for every p ⩾ 0, Hp(X,F) = Hp(Y, f∗F).

(ii) State the Mayer–Vietoris theorem in sheaf cohomology.

Let X =
⋃m

i=1 Ui be an open cover of a scheme X and F an abelian sheaf on
X. Suppose that for every nonempty subset {i1, . . . , ir} ⊂ {1, . . . ,m} and every p ⩾ 0,
Hp(Ui1 ∩ · · · ∩ Uir ,F) = 0. Show that for every p ⩾ 0, Hp(X,F) = 0.

(iii) Let A be a reduced Noetherian ring, and f : X → SpecA a proper morphism.
Suppose that F is a coherent OX -module, flat over SpecA, and n ⩾ 0 an integer such
that Hp(X,F) = 0 for every p > n.

State a theorem about the existence of a complex of locally free A-modules
computing the cohomology of F . Use it to show that Hn(X,F) = 0 if and only if,
for every s ∈ SpecA, Hn(Xs,F(s)) = 0.

(iv) Let f : X → Y be a proper morphism of schemes, with Y reduced, and F
a coherent OX -module, flat over Y . Suppose that for every y ∈ Y and every p ⩾ 0,
Hp(Xy,F(y)) = 0. Show that for every p ⩾ 0, Hp(X,F) = 0.

3 (a) What is a group scheme over a field k?

Let G and H be group schemes over k. What is a homomorphism of group schemes
from H to G?

Suppose that G andH are commutative. Let Homk(H,G) be the set of homomorph-
isms from H to G, and for any k-scheme S, let G(S) be the group of S-valued points of
G.

Show that Homk(H,G) is a subgroup of the group G(H), and that for every k-
algebra R, every f , g ∈ Homk(H,G) and every x ∈ H(R), fR(x) + gR(x) = (f + g)R(x).
Show also that for every integer n ⩾ 1, nf = f ◦ [n]H = [n]G ◦ f , where [n]G, [n]H are the
multiplication-by-n morphisms on G and H.

(b) State a version of Mumford’s Rigidity Lemma.

Let k be an algebraically closed field. Suppose that X and Y are abelian varieties
over k, and that S is a k-variety.

Let f : X × S → Y be a morphism such that f(e, s) = e for every s ∈ S(k). Show
that there exists g ∈ Homk(X,Y ) such that for every s ∈ S(k), f |X×s = g.
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4 Let X be an abelian variety over an algebraically closed field k.

(i) State the Theorem of the Square.

(ii) Define the map ϕL : X(k) → Pic(X) for a line bundle L on X, and show that it
is a homomorphism.

Show that ϕL⊗M(x) = ϕL(x)ϕM(x) and ϕL⊗n(x) = ϕL(nx) for any L, M ∈ Pic(X),
x ∈ X(k), and n ⩾ 1.

Deduce that the quotient Pic(X)/Pic0(X) is torsion-free, where Pic0(X) = {L ∈
Pic(X) | ϕL is trivial}, and that for every L ∈ Pic(X), im(ϕL) ⊂ Pic0(X).

(iii) Let Λ(L) = m∗L ⊗ pr∗1L∨ ⊗ pr∗2L∨ ∈ Pic(X × X). Show that L ∈ Pic0(X) if
and only if Λ(L) is trivial.

(iv) Let Y be any k-variety, and f , g : Y → X morphisms. Let f + g denote their
sum in the group X(Y ).

Show that if L ∈ Pic0(X) then (f + g)∗L ≃ f∗L ⊗ g∗L in Pic(Y ). Deduce that if
L ∈ Pic0(X), then i∗L ≃ L∨ and for every n ∈ Z, [n]∗L ≃ L⊗n.

By considering L⊗2, show that if i∗L ≃ L∨ then L ∈ Pic0(X).
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