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(a) Define the group law on an elliptic curve in terms of the chord and tangent
process, and verify that it satisfies the group axioms.

(b) Let E/Q be the elliptic curve y2 + y = x3 − 4x + 2 with discriminant
∆ = 1909 = 23 · 83.

(i) Let P = (0, 1) and Q = (−2, 1). Compute 2P and P +Q.

(ii) Compute #Ẽ(Fp) for p = 3, 5, 7.

(iii) Prove that the torsion subgroup of E(Q) is trivial.

(iv) Find a prime p of good reduction with Ẽ(Fp) non-cyclic, and use this to show that P
and Q (as defined in (i)) are independent points of infinite order, i.e. mP +nQ = 0
if and only if m = n = 0.
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(a) State and prove Hasse’s theorem.

(b) Let E/Q be the elliptic curve y2 = x3 + 3. Show that Ẽ(Fp) has no point of

order 17 for p = 17 and p = 31. In each case decide whether Ẽ(Fpn) has a point of order
17 for some n ⩾ 2.

3

Let K be a finite extension of Qp with valuation ring OK , uniformiser π, and residue
field k. Let n ⩾ 2 be an integer with p ∤ n.

(a) What is a formal group F over OK? What is a morphism of formal groups? State
and prove a condition for a morphism of formal groups to be an isomorphism.
Deduce that F(πOK) has no n-torsion.

(b) Let E/K be an elliptic curve. Define the groups E0(K), E1(K) and Ẽns(k). Briefly
outline how it follows from part (a) that there is an injective group homomorphism

E0(K)[n] → Ẽns(k).

(c) Let E/Q be an elliptic curve. Prove that the set of primes of bad reduction for E
and the torsion subgroup of E(Q) are both finite. Compute these for the elliptic
curve y2 = x3 + 30x+ 30.
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(a) Let L/K be a finite Galois extension, n ⩾ 2 an integer, and E/K an elliptic
curve. Prove that if E(L)/nE(L) is finite then E(K)/nE(K) is finite.

(b) Let A be an abelian group, n ⩾ 2 an integer, and h : A → R a function satisfying

(i) For any B ∈ R the set {P ∈ A : h(P ) ⩽ B} is finite.

(ii) There exists c1 ∈ R such that |h(2P )− 4h(P )| ⩽ c1 for all P ∈ A.

(iii) There exists c2 ∈ R such that

h(P +Q) + h(P −Q) ⩽ 2h(P ) + 2h(Q) + c2

for all P,Q ∈ A.

Show that
A is finitely generated ⇐⇒ |A/nA| < ∞.

(c) Define the height H(x) of a rational number x. Which of the conditions in (b)
are satisfied if A = (Q,+) and h(x) = logH(x)? Justify your answer.

5

Let d ⩾ 1 be an integer. Let E be the elliptic curve {u3 + dv3 = w3} ⊂ P2 with
0E = (1 : 0 : 1) and E′ the elliptic curve y2 + dy = x3 with 0E′ the point at infinity.

(a) What is an isogeny of elliptic curves? Show that ϕ : E → E′; (u, v, w) 7→ (uw
v2

, u
3

v3
)

is an isogeny of degree 3.

(b) When is a divisor on an elliptic curve principal? Find 0 ̸= T ∈ E′(Q), and
f ∈ Q(E′), g ∈ Q(E) such that div(f) = 3(T ) − 3(0) and ϕ∗f = g3. Deduce that T is in
the kernel of the dual isogeny ϕ̂ : E′ → E.

(c) Show that there is a group homomorphism α : E′(Q) → Q×/(Q×)3 with kernel
ϕE(Q). Give an explicit formula for α and use it to show that Im(α) ⊂ Q(S, 3) where S
is the set of primes dividing d. Deduce that if d = 1 then ϕ : E(Q) → E′(Q) is surjective.

[The long exact sequence of Galois cohomology, properties of the Weil pairing, and Hilbert’s
theorem 90 may be assumed without proof. It may help to note that α(T ) = α(−T )−1.]
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