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1 (i) Prove that if P ̸= NP, then there is a problem in NP that is neither in P nor
NP-complete. [Any facts you might need about encodings of problems or Turing machines
as bit sequences may be assumed.]

(ii) Show that the following problem is NP-complete. The input is a system of m
quadratic equations over F2 in n variables x1, . . . , xn and the output is 1 if they have a
solution. Here a quadratic equation is an equation of the form

∑
i,j aijxixj+

∑
i bixi+c = 0,

where the coefficients aij , bi, c belong to F2. [Hint: consider the quadratic equation
(1− u)(1− v) = (1− w).]

2 (i) What does it mean for a function to be NL-complete? Given an example of an
NL-complete function and explain briefly why it is NL-complete. [You may assume the
definition of NL.]

(ii) Prove that NL = co-NL.

(iii) A directed graph is said to be strongly connected if for every pair of vertices u, v
there is a directed path from u to v and a directed path from v to u. Prove that the problem
of determining whether a directed graph is strongly connected is NL-complete.

3 (i) Suppose that NP ⊂ P/poly. Show that for every function f ∈ NP there is a
family of circuits (Cn) of polynomial size such that for every n and every input x of size
n, if f(x) = 1 then the output of Cn(x) is a certificate that f(x) = 1 that can be verified
in polynomial time.

(ii) Prove that if NP ⊂ P/poly, then the polynomial hierarchy collapses to ΣP
2 .

(iii) Let A be an oracle such that PA = NPA. Must it be the case that PA = PHA?

4 (i) Define the complexity class RP, and prove that RP ⊂ P/poly.

(ii) The complexity class ZPP can be defined to be the intersection of RP and
co-RP. An alternative definition is that f belongs to ZPP if there is a Turing machine
T with an infinite supply of random bits such that for every x, the expected time for T
to halt is at most polynomial in |x| (so in particular, T halts with probability 1), and if T
halts, then it outputs f(x). Prove that these two definitions are equivalent.

(iii) Show that primality testing belongs to co-RP. [You may assume divisibility
results concerning binomial coefficients, and also a lower bound for the number of monic
irreducible polynomials of degree d over Fp when p is prime.]
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