MAMA/120

MAT3 MATHEMATICAL TRIPOS Part III

Thursday 30 May 2024 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 120

MODEL THEORY AND NON-CLASSICAL LOGIC

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **THREE** questions in total. Questions 1 and 3 carry 30 marks each. Question 2 carries 40 marks.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) Let \mathcal{L} be a first-order language and \mathcal{M} be an \mathcal{L} -structure. Define the *diagram* and the *elementary diagram* of \mathcal{M} . Describe the technique known as *the method of diagrams*.

Recall that a family of \mathcal{L} -structures $\{\mathcal{A}_i \mid i \in I\}$ is an *embedding chain* (respectively, an *elementary embedding chain*) if the set I is a total order and $i \leq j$ implies that \mathcal{A}_i is a substructure (respectively, an elementary substructure) of \mathcal{A}_j .

(b) Suppose that $\{\mathcal{A}_i \mid i \in I\}$ is an embedding chain of \mathcal{L} -structures. Show that $\mathcal{A} := \bigcup_{i \in I} \mathcal{A}_i$ can be made into an \mathcal{L} -structure such that \mathcal{A}_i is a substructure of \mathcal{A} for all $i \in I$. Furthermore, show that if the chain is an elementary embedding chain, then each \mathcal{A}_i is an elementary substructure of \mathcal{A} .

[For item (b), you may assume that quantifier-free formulae are preserved under extensions/substructures without proof.]

(c) A $\forall\exists$ -sentence is one of the form $\forall \bar{x}. \exists \bar{y}. \phi(\bar{x}, \bar{y})$, where ϕ is quantifier-free. Show that a first-order theory \mathcal{T} admits an axiomatisation by $\forall\exists$ -sentences if and only if it is preserved under unions of embedding chains of structures (i.e., if all structures in an embedding chain model \mathcal{T} , then their union also models \mathcal{T}).

[*Hint: consider the set* \mathcal{T}_0 *of all* $\forall \exists$ *-sentences provable from* \mathcal{T} .]

(d) What does it mean for a theory \mathcal{T} to be *model-complete*? Prove that a model-complete theory must be axiomatisable by $\forall \exists$ -sentences.

 $\mathbf{2}$

(a) Let \mathcal{M} be an \mathcal{L} -structure, X be a subset of \mathcal{M} , and n be a natural number. Define what is meant by a *complete n-type* of \mathcal{M} over X and define the topological space $S_n^{\mathcal{M}}(X)$. What is an *isolated n-type*?

3

(b) Let p be an n-type of \mathcal{M} over $X \subseteq \mathcal{M}$. Show that there is an elementary extension \mathcal{N} of \mathcal{M} such that p is realised in \mathcal{N} .

(c) Show that $S_n^{\mathcal{M}}(X)$ is totally disconnected, i.e., for any distinct points $p, q \in S_n^{\mathcal{M}}(X)$, there are disjoint open sets U, V such that $p \in U, q \in V$, and $S_n^{\mathcal{M}}(X) = U \cup V$.

(d) Let \mathcal{T} be a Skolem \mathcal{L} -theory, $\mathcal{M} := F(\eta)$ be an Ehrenfeucht-Mostowski model of \mathcal{T} , and X be a subset of \mathcal{M} . Show that if η is a well-ordering, then the number of complete 1-types over X realised in \mathcal{M} is at most $|\mathcal{L}| + |X|$.

(e) A model of a theory \mathcal{T} is a *prime model* if it elementarily embeds into any model of \mathcal{T} . Let \mathcal{L} be a countable language and let \mathcal{T} be a complete \mathcal{L} -theory with infinite models. Show that $\mathcal{M} \models \mathcal{T}$ is a prime model if and only if it is countable and $\operatorname{tp}^{\mathcal{M}}(\bar{a}/\emptyset)$ is isolated for every natural number n and tuple $\bar{a} \in \mathcal{M}^n$.

[For item (e), you may use any results proved in the lectures provided that you state them correctly and precisely.]

(f) Let \mathcal{L} be a countable language and let \mathcal{T} be a complete \mathcal{L} -theory with infinite models. Prove that if \mathcal{T} admits a prime model, then the set of isolated points of $S_n(\mathcal{T})$ is a dense subset of $S_n(\mathcal{T})$ for all n.

3 (a) State and prove the *Curry-Howard correspondence* between the implicational fragments of the simply typed λ -calculus and the intuitionistic propositional calculus.

(b) Let σ and τ be type variables. Show that there is no simply typed $\lambda(\rightarrow)$ -term M such that $\Vdash M \colon ((\sigma \rightarrow \tau) \rightarrow \sigma) \rightarrow \sigma$.

(c) Is there a first-order theory \mathcal{T} on some language \mathcal{L} that axiomatises those Heyting algebras H for which $\neg \neg p = p$ for only finitely many $p \in H$? Justify your claim.

[For items (b) and (c), you may use any results proved in the lectures provided that you state them correctly and precisely.]

END OF PAPER