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1 (a) Define the following terms including the definitions of any relevant terms you
use in the definition:

(i) strongly inaccessible cardinal,

(ii) weakly compact cardinal,

(iii) measurable cardinal and

(iv) strongly compact cardinal.

[You may assume that the definitions of “κ+”, “2κ”, “[X]2”, “singular cardinal”,
“regular cardinal”, “limit cardinal”, “filter”, “ultrafilter”, as well as the syntax and
semantics of infinitary languages are known.]

(b) Prove that every measurable cardinal is strongly inaccessible.

[You may assume without proof that measurable cardinals are regular.]

(c) Prove that if κ is strongly compact, then every κ-complete filter on κ can be
extended to a κ-complete ultrafilter.

(d) Prove that every strongly compact cardinal is measurable.

[You may assume without proof that strongly compact cardinals are regular.]
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2 (a) Explain what the phrase “a β-strong embedding reflects β-stable properties of
κ to an unbounded subset of κ” means, including the definitions of the italicised terms
occurring in the phrase.

(b) Let κ be measurable, λ > κ be inaccessible, and j : Vλ → M be the ultrapower
embedding. Furthermore, let η be such that M |= j(κ)+ = η. Prove the following
statements:

(i) If κ < α < κ+, then M |=“α is not a cardinal”.

(ii) Vλ |=“η is not a cardinal”.

[You may use results from the lectures without proof provided that you state them
correctly.]

(c) Let α be any ordinal, M be a transitive set, and j : Vα → M be a non-trivial
elementary embedding with crit(j) = κ. The proof of Kunen’s Inconsistency gives ordinals
β and γ and a set X such that “if α ⩾ β, then X ∈ Vγ\M”. Provide β, γ, and X.

[You do not need to prove the statement.]

(d) Suppose that δ is a limit ordinal and j : Vδ → Vδ is a non-trivial elementary
embedding with crit(j) = κ < δ. Show that cf(δ) = ℵ0.

[You may use results from the lectures without proof provided that you state them
correctly.]
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