MAMA/115, NST3AS/115, MAAS/115

MAT3 MATHEMATICAL TRIPOS Part III

Friday 7 June 2024 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 115

DIFFERENTIAL GEOMETRY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let M be a manifold. Give three different formulations of *orientability* of M. Prove that the three formulations are equivalent and explain carefully what is meant by an *orientation* of M in each case.

[Existence of a partition of unity on a manifold can be assumed, provided that you accurately state this result.]

Prove that if the product $M \times \mathbb{R}$ is orientable, then M is orientable.

Prove that if the product of two manifolds $M \times N$ is orientable, then each of M and N must be orientable.

2 Let M be a manifold. Define the notions *immersed submanifold* of M and *embedded* submanifold of M.

Let $N \subset M$ be an embedded submanifold, $m = \dim M$, $n = \dim N$, and let $p \in N$. Show that there exists a local coordinate chart (ψ, V) on M around p with coordinates $x = (x_i)$ such that $\psi(V \cap N) = \{x \in \psi(V) : x_{n+1} = \ldots = x_m = 0\}$ and $\psi|_{V \cap N}$ is a valid local coordinate chart around p (with coordinates x_1, \ldots, x_n) in the differentiable structure on N.

Suppose now that a submanifold $N \subset M$ is only known to be immersed. Suppose further that for each $g \in C^{\infty}(N)$ there is a C^{∞} function f on M such that $f|_N = g$. By considering g supported on a small neighbourhood of a suitable $p \in N$, or otherwise, show that N is an embedded submanifold of M.

[You may assume that for every $p \in N$ one can choose a coordinate chart (U_p, ϕ_p) on N with $p \in U_p$ so that U_p is an embedded submanifold of M.]

Let again $N \subset M$ be an embedded submanifold and let X be a vector field on M. We say that X is *tangent to* N if for all $p \in N$ the vector X(p) is in the image of the derivative $(d\iota)_p$ of the inclusion map $\iota : N \to M$. Prove that X is tangent to N if and only if $(Xf)|_N = 0$ for all $f \in C^{\infty}(M)$ such that $f|_N = 0$.

Define the *Lie bracket* [X, Y] of two vector fields X, Y on M. Give the expression for [X, Y] in local coordinates.

Show that if two vector fields X and Y are tangent to an embedded submanifold $N \subset M$, then [X, Y] is also tangent to N and $[X, Y]|_N$ is determined by $X|_N$ and $Y|_N$.

3 Let $\pi : E \to B$ be a real vector bundle over a manifold B. Define the terms a *horizontal subspace* at $p \in E$ and a *connection* on E.

Let v be a horizontal vector at $p \in E$ (with respect to a given connection on E). By considering lifts of appropriate smooth curves on B, or otherwise, show that there exists a vector field V on E with V(p) = v and such that V(q) is horizontal for every $q \in E$.

Let M be a manifold and $f: M \to B$ a smooth map. By constructing an appropriate family of local trivialisations and transition functions, show that $f^*E = \bigsqcup_{p \in M} \pi^{-1}(f(p))$ can be made into a manifold with the projection map $\tilde{\pi}(v_p) = p$ for $v_p \in E_{f(p)}$ defining a vector bundle over M, called the *pull-back* of E via f. Given a local section s of E over an open set $U \subset B$, explain how $s \circ f$ uniquely determines a local section of f^*E .

What is a *covariant derivative* on E? Explain briefly how a connection A on E induces a covariant derivative d_A . Suppose that $d_{A'}$ is a covariant derivative induced by a connection on f^*E and

$$\langle d_{A'}(s \circ f), X \rangle = \langle d_A s, (df) X \rangle \circ f$$

holds for all vector fields X on M and sections s of E over B. Choosing appropriate local trivializations of E and of f^*E , determine the coefficients of A' in terms of those of A.

[You may assume that every covariant derivative is a local operator if you define what this means.]

4 (i) Let (M,g) be an *n*-dimensional Riemannian manifold. State the ordinary differential equations satisfied by *geodesics* on M in local coordinates, defining clearly all terms appearing in the equation.

Define the *exponential map* at $p \in M$ and prove that the exponential map induces well-defined local coordinates, the *geodesic coordinates*, on some neighbourhood of p.

Now let (φ, U) be a coordinate chart with $\varphi(U)$ a star domain at 0 (for each $x \in \varphi(U)$ the straight line segment from 0 to x lies in $\varphi(U)$) and let $p \in U$, $\varphi(p) = 0$. Prove that φ defines the geodesic coordinates on U if and only if $g_{ij}(0) = \delta_{ij}$ is the identity matrix and

$$\sum_{i,j=1}^n x^i x^j \Gamma^k_{ij}(x) = 0$$

for all k = 1, ..., n and all $x = (x^i) \in \varphi(U)$.

(ii) Let (M, g) be an oriented Riemannian manifold. Explain how g extends to give an inner product on the bundles of differential forms on X. Define the *Hodge* *-operator for the differential forms on X and compute its square on r-forms. (You do not need to define the volume form of g.)

Now assume in addition that M is compact and dim M = 4. Let η be a differential 2form on X. Prove, without using the Hodge decomposition theorem, that if $*d\delta\eta = -d\delta\eta$, then $\delta\eta = 0$.

[You may assume that $\delta = -*d*$ defines the formal L^2 adjoint of the exterior derivative d in 4 dimensions.]

END OF PAPER