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1 Let n > 1 be a positive integer. Let Y be the quotient space of a closed two-
dimensional disc D2 by identifying points on the boundary ∂D2 by the rotation action
z 7→ e2iπ/n · z. Compute H∗(Y ;Z).

Suppose that the continuous map f : Y → Y induces a surjection on H∗(Y ;Z).
Prove that f is itself a surjection. Is the converse true?

Let Z ⊂ Y be the image of ∂D2 in Y . When n > 2, show that any homeomorphism
f : Y → Y must satisfy f(Z) ⊂ Z. Does the same conclusion hold when n = 2? Briefly
justify your answer.

2 Let f : X → Y be a double covering of topological spaces, so f is a local
homeomorphism and f−1(y) consists of two points for every y ∈ Y . Construct a short
exact sequence of chain complexes

0 → C∗(Y ;Z/2) → C∗(X;Z/2) → C∗(Y ;Z/2) → 0

explaining carefully the maps which arise.

[You may assume that if D is homeomorphic to a closed disc (of any dimension)
and σ : D → Y is continuous, then for x ∈ D and p ∈ f−1(σ(x)), there is a unique
continuous map σ̃ : D → X with σ̃(x) = p and f ◦ σ̃ = σ.]

By considering the corresponding long exact sequence in homology, or otherwise,
prove that if ϕ : Rn → Rn is a continuous involution, i.e. satisfies ϕ ◦ ϕ = id, then ϕ has a
fixed point.

LetM be a compact manifold of odd dimension 2k+1, and remove an open ball from
M to give a manifold P with boundary ∂P ∼= S2k. By considering Euler characteristics,
or otherwise, show that the antipodal map on S2k does not extend to a continuous fixed-
point-free involution of P .

3 Let 0 < k < n. Compute the integral cohomology of the quotient space CPn/CPk

and determine the ring structure in cohomology. (You do not need to give a closed formula
for the cohomology ring.) For which n and k is this space homotopy equivalent to a
compact manifold?

Let ι denote the inclusion map ι : CP2/CP1 ↪→ CP4/CP1. Show there is no
continuous map r : CP4/CP1 → CP2/CP1 for which r ◦ ι ≃ id.
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4 Compute H∗(Sn × Sn;Z) as a ring. Explain how the naturality of cohomology
defines a homomorphism from the group of homeomorphisms of Sn × Sn to GL(2;Z).
Find the image of this homomorphism when n = 1 and when n = 2.

If L is a complex line bundle with dual bundle L∗, prove that L∗ ⊗C L is a trivial
line bundle. Hence, or otherwise, show that every class α ∈ H2(S2 × S2;Z) arises as the
Euler class of an oriented real rank two vector bundle Eα → S2 × S2. [You may assume
the formula e(L1 ⊗C L2) = e(L1) + e(L2) for Euler classes of complex line bundles.]

Writing S(Eα) for the sphere bundle of Eα, compute H∗(S(Eα);Z) additively.
Deduce that this cohomology does not determine the orbit of α under the homeomorphism
group.

END OF PAPER
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