MAMA/114

MAT3 MATHEMATICAL TRIPOS Part III

Thursday 30 May 2024 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 114

ALGEBRAIC TOPOLOGY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let n > 1 be a positive integer. Let Y be the quotient space of a closed twodimensional disc D^2 by identifying points on the boundary ∂D^2 by the rotation action $z \mapsto e^{2i\pi/n} \cdot z$. Compute $H_*(Y; \mathbb{Z})$.

Suppose that the continuous map $f: Y \to Y$ induces a surjection on $H_*(Y; \mathbb{Z})$. Prove that f is itself a surjection. Is the converse true?

Let $Z \subset Y$ be the image of ∂D^2 in Y. When n > 2, show that any homeomorphism $f: Y \to Y$ must satisfy $f(Z) \subset Z$. Does the same conclusion hold when n = 2? Briefly justify your answer.

2 Let $f : X \to Y$ be a double covering of topological spaces, so f is a local homeomorphism and $f^{-1}(y)$ consists of two points for every $y \in Y$. Construct a short exact sequence of chain complexes

 $0 \to C_*(Y; \mathbb{Z}/2) \to C_*(X; \mathbb{Z}/2) \to C_*(Y; \mathbb{Z}/2) \to 0$

explaining carefully the maps which arise.

[You may assume that if D is homeomorphic to a closed disc (of any dimension) and $\sigma : D \to Y$ is continuous, then for $x \in D$ and $p \in f^{-1}(\sigma(x))$, there is a unique continuous map $\tilde{\sigma} : D \to X$ with $\tilde{\sigma}(x) = p$ and $f \circ \tilde{\sigma} = \sigma$.]

By considering the corresponding long exact sequence in homology, or otherwise, prove that if $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is a continuous involution, i.e. satisfies $\phi \circ \phi = id$, then ϕ has a fixed point.

Let M be a compact manifold of odd dimension 2k+1, and remove an open ball from M to give a manifold P with boundary $\partial P \cong S^{2k}$. By considering Euler characteristics, or otherwise, show that the antipodal map on S^{2k} does not extend to a continuous fixed-point-free involution of P.

3 Let 0 < k < n. Compute the integral cohomology of the quotient space $\mathbb{CP}^n/\mathbb{CP}^k$ and determine the ring structure in cohomology. (You do not need to give a closed formula for the cohomology ring.) For which n and k is this space homotopy equivalent to a compact manifold?

Let ι denote the inclusion map $\iota : \mathbb{CP}^2/\mathbb{CP}^1 \hookrightarrow \mathbb{CP}^4/\mathbb{CP}^1$. Show there is no continuous map $r : \mathbb{CP}^4/\mathbb{CP}^1 \to \mathbb{CP}^2/\mathbb{CP}^1$ for which $r \circ \iota \simeq id$.

4 Compute $H^*(S^n \times S^n; \mathbb{Z})$ as a ring. Explain how the naturality of cohomology defines a homomorphism from the group of homeomorphisms of $S^n \times S^n$ to $GL(2;\mathbb{Z})$. Find the image of this homomorphism when n = 1 and when n = 2.

If L is a complex line bundle with dual bundle L^* , prove that $L^* \otimes_{\mathbb{C}} L$ is a trivial line bundle. Hence, or otherwise, show that every class $\alpha \in H^2(S^2 \times S^2; \mathbb{Z})$ arises as the Euler class of an oriented real rank two vector bundle $E_{\alpha} \to S^2 \times S^2$. [You may assume the formula $e(L_1 \otimes_{\mathbb{C}} L_2) = e(L_1) + e(L_2)$ for Euler classes of complex line bundles.]

Writing $S(E_{\alpha})$ for the sphere bundle of E_{α} , compute $H^*(S(E_{\alpha});\mathbb{Z})$ additively. Deduce that this cohomology does not determine the orbit of α under the homeomorphism group.

END OF PAPER