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Throughout this question the symbol k will be used to denote a field and the term
“coherent sheaf” will mean “coherent sheaf of OX -modules”.

(a) Define separatedness for a morphism of schemes. Given an example of a scheme X
and two affine opens U ⊂ X and V ⊂ X such that U ∩ V is not affine. Comment
on whether the chosen example X is separated.

(b) Equip the polynomial ring A• = k[x, y] with the standard grading, and define P1
k

to be Proj A•. Let M = A•(d) be the graded A•-module whose degree m part Mm

is the degree m + d part Am+d of A•. Let O(d) be the coherent sheaf associated
to A•(d). By describing the sections of this sheaf, calculate the dimension of the
vector space H0(P1

k,O(d)) for all d.

Let X be a scheme and let {Ui}i∈I be an open affine cover. Let F and G be coherent
sheaves such that, for all i ∈ I, the restrictions F|Ui and G|Ui are isomorphic. Is it
necessarily true that F is isomorphic to G?
Let H and K be line bundles (i.e. locally free sheaves of rank 1) on a scheme Y and
let φ : H → K be an injective morphism of coherent sheaves. Is φ necessarily an
isomorphism?

(c) Let p be a closed k-point in Pn
k for n ⩾ 2, letX = Pn

k\{p}, and let π : X → Spec(k) be
the natural morphism. Calculate the pushforward π⋆OX and comment on whether
the result is a coherent sheaf on Spec(k).

Let Y be the complement of a closed k-point in P1
k. Is the pushforward of OY under

Y → Spec(k) coherent?

Give an example of a coherent sheaf F on X such that π⋆F is not coherent.
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(a) Define the fibre product of schemes and state what it means for a morphism to be
universally closed.

Give an example of a morphism that is closed but not universally closed.

Give an example of a morphism of schemes X → Y that is of finite type and
universally closed, but not separated. Justify your answer.

(b) Let X → S be a morphism of schemes. Prove that diagonal morphism X → X×SX
is always a locally closed immersion.

Let k be a field and let f : A1
k → Spec(k) be the morphism induced by the inclusion

k ↪→ k[x]. Let ∆ denote the image of the diagonal morphism

A1
k → A1

k ×Spec(k) A1
k.

Let U denote the complement of ∆ with the induced open subscheme structure.
Show that U is isomorphic to an affine scheme.

Give an example of a separated scheme X over Spec(k) such that the complement
of the diagonal in X ×Spec(k) X is not affine.

(c) What is the Weil divisor class group of a (noetherian, separated, integral, regular
in codimension 1) scheme?

SupposeX is a scheme with trivial class group and let U ⊂ X be an open subscheme.
Then does U also have trivial class group? Justify your answer.

Prove or give a counterexample: all affine schemes have trivial class group.
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Throughout this question, the symbol k will be used to denote a field.

(a) What is a quasi-coherent OX -module on a scheme X?

Let X = Y = P1
k. Consider the morphism f : X → Y given in homogeneous

coordinates by
[x0, x1] 7→ [x20, x

2
1].

Prove that f⋆OX is a locally free OY -module of rank 2.

(b) Suppose W is the closed subscheme in An
k defined by V(f1, . . . , fm). Let Y denote

the complement of W . Prove that the Cech cohomology group Hm(Y,OY ) vanishes.

Let x, y, z denote the standard coordinate functions on A3
k. Let p ∈ A3

k be a closed
k-point and let ℓ ⊂ A3

k be the closed subscheme defined by the ideal (x, y). By using
Cech cohomology or otherwise, prove that the schemes A3

k \ {p} and A3
k \ ℓ are not

isomorphic.

(c) Suppose k is algebraically closed. Say a scheme Z over Spec(k) is punctual if its
underlying topological space is a single closed k-point. Give, with justification, two
non-isomorphic punctual schemes over Spec(k).

Let Z and Z ′ be closed subschemes of A1
k that are both punctual, with the same

underlying topological space. Suppose H0(Z,OZ) and H0(Z ′,OZ′) have the same
dimension as vector spaces over k. Prove that Z and Z ′ are isomorphic as closed
subschemes of A1

k.

Give an example of two distinct punctual closed subschemes Y and Y ′ of A2
k with

the same underlying topological space, and such that H0(Y,OY ) and H0(Y ′,OY ′)
have the same dimension as vector spaces over k.
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