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(a) Show that for n ⩾ 1, the power set P(n) has a symmetric chain decomposition.

(b) Let X1 ∪X2 be a partition of a set X with |X| = n and |Xi| = ni for i = 1, 2,
with n1 and n2 even. Let F ⊂ P(X) be such that if E,F ∈ F with E ⊊ F then F \E ̸⊂ Xi,
i = 1, 2. Show that |F| ⩽

(
n

n/2

)
.
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Let p be a prime and consider the vector space V = Zp ⊕ Zp over Zp.

(a) Let (vi)
m
1 , vi = (ai, bi), be a sequence of length m = 3p whose members are

vectors in V summing to 0. Show that some p members of this sequence also sum to 0,
i.e. there is a p-subset I ⊂ [m] such that

∑
i∈I vi = 0.

(b) Now let (vi)
m
1 , vi = (ai, bi), be a sequence of length m = 4p− 2 whose members

are vectors in V . Show that some p members of this sequence sum to 0.

[If you wish to use a theorem from algebra, you must state it precisely.]
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(a) For non-negative integers a1, . . . , an, let D(a) = D(a1, . . . , an) be the constant
term in the expansion of the n-variable Laurent polynomial

n∏

i=1

∏

1⩽j⩽n
j ̸=i

(
1− Xi

Xj

)ai

.

Show that D(a) is equal to the multinomial coefficient

M(a) =

(
m

a1, . . . , an

)
,

where m = a1 + · · ·+ an.

(b) Let G be the group (Zp)
γ , where p ⩾ 3 is a prime and γ ⩾ 1 is an integer. Let

A = {a1, . . . , ak} and B be subsets of G, each with k < p elements. Show that there is a
numbering b1, . . . , bk of the elements of B, such that the sums a1 + b1, . . . , ak + bk are all
different.

[Hint: Identify G with the additive group of the finite field Fq of order q = pγ.]
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(a) Show the equivalence of the following three assertions.

(i) Every antipodal map f : Sn → Rn maps a point into 0.

[Here as usual we say that f is ‘antipodal’ if it is continuous with f(−x) =
−f(x) for every x ∈ Sn.]

(ii) There is no antipodal map from Sn to Sn−1.

(iii) There is no continuous map from Bn to Sn−1 which is antipodal on the
boundary of Bn.

(b) Let C1, . . . , Cn be families of intersecting convex compact sets in Rn. (Thus
A∩B ̸= ∅ if A,B ∈ Ci for some i.) Show that there is a hyperplane in Rn which intersects
every set in ∪n

i=1Ci.
[In your answer to Part (b), you may use without proof that the statements in Part

(a) are true.]

[Hint: Given a unit vector v ∈ Rn, let ℓv be the line in the direction of v through the
origin. The projections of the sets in Ci into ℓv intersect in an interval: write mi(v) for
the midpoint of this interval, and fi(v) for the signed distance of mi(v) from the origin.
Show that there is a unit vector v ∈ Sn−1 such that f1(v) = · · · = fn(v), and make use of
this.]

END OF PAPER

Part III, Paper 109


