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Throughout this question, any results from the course may be used without proof
provided they are clearly stated.

(a) Let K be a weakly compact subset of a Banach space X. Prove that K is weakly
sequentially compact. [Hint: First show that under the additional assumption that X is
separable, K is weakly metrizable.]

(b) Let X and Y be Banach spaces and T : X → Y be a compact operator. Assume
that X is reflexive. Show that for any bounded sequence (xn) in X, there is a subsequence
(xkn) of (xn) and an element z ∈ X such that Txkn → Tz as n → ∞.

(c) A Banach spaceX is called a Grothendieck space if every w∗-convergent sequence
in X∗ is weakly convergent.

Show that every reflexive space is a Grothendieck space. Conversely, show that if
X is a separable Grothendieck space, then X is reflexive. [You may assume the converse
of part (a): a weakly sequentially compact subset of a Banach space is weakly compact.]

Show that if T : X → Y is a bounded linear map from a Grothendieck space X onto
a Banach space Y , then Y is also a Grothendieck space.
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Throughout this question, A is a unital C∗-algebra. You may assume any result
about general Banach algebras but no results specific to C∗-algebras.

Define what it means for an element x ∈ A to be, respectively, hermitian, unitary,
normal and positive.

Let τ ∈ A∗ be a linear functional with ∥τ∥ = τ(1). Show that τ(x) ∈ R for every
hermitian x ∈ A. [Hint: Consider x+ it1 for t ∈ R.] Deduce that τ(x∗) = τ(x) for every
x ∈ A.

Let x ∈ A be hermitian. Prove that σA(x) ⊂ R and that ∥x∥ = rA(x). Show further
that x may be written as a difference of two positive elements of A.

Let x ∈ A be positive with ∥x∥ ⩽ 1. Show that 1− x is positive and ∥1− x∥ ⩽ 1.

A bounded linear functional τ ∈ A∗ is said to be positive if τ(x) is real and non-
negative for every positive x ∈ A. Show that if τ ∈ A∗ satisfies ∥τ∥ = τ(1), then τ is
positive. Deduce that every character φ ∈ ΦA is positive. Give an example of a positive
functional on C[0, 1] that is not a character.

Let τ ∈ A∗ be a positive functional. Show that τ(x) ∈ R for every hermitian x ∈ A.
Explain briefly why the inequality

|τ(y∗x)| ⩽ τ(x∗x)1/2τ(y∗y)1/2

holds for all x, y ∈ A. [You may assume that z∗z is positive for every z ∈ A.] Deduce that
|τ(x)|2 ⩽ τ(x∗x)τ(1) for every x ∈ A and that ∥τ∥ = τ(1).

A positive functional τ ∈ A∗ with ∥τ∥ = 1 is called a state. Show that the set S(A)
of states of A is convex. Show that for every normal element x ∈ A there exists a state τ
with |τ(x)| = ∥x∥. [Hint: Consider the unital C∗-subalgebra of A generated by x and use
Hahn–Banach.]

An extreme point of S(A) is called a pure state. Show that the set PS(A) of all
pure states of A is non-empty. Show that if x ∈ A is positive, then there is a pure state τ
with τ(x) = ∥x∥. [Hint: Consider a suitable face of S(A).]
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State and prove the Hahn–Banach separation theorem for a disjoint pair of non-
empty convex sets A and B in a real locally convex space X with A open. [You may
assume any form of the Hahn–Banach extension theorems. You must prove any other
results used.]

Let E be a real vector space and let F be a subspace of linear functionals on E that
separates the points of E: for every non-zero x ∈ E, there exists f ∈ F with f(x) ̸= 0.
Call such a pair (E,F ) a dual pair. Define the weak topology σ(E,F ) on E. Show
that

(
E, σ(E,F )

)∗
= F . Define the weak topology of a normed space and the weak-star

topology of a dual space. Show that a Banach space X is reflexive if and only if the weak
and weak-star topologies on X∗ coincide.

Let (E,F ) be a dual pair as above. For A ⊂ E define

A◦ = {f ∈ F : f(x) ⩽ 1 for all x ∈ A} ,

and for B ⊂ F define

B◦ = {x ∈ E : f(x) ⩽ 1 for all f ∈ B} .

Given A ⊂ E, show that A ∪ {0} ⊂ A◦◦ and identify, with proof, the set A◦◦.

4

Let K be a compact Hausdorff space. Define the set M+(K) of positive linear
functionals. Show that if φ ∈ M+(K), then φ is continuous with ∥φ∥ = φ(1K). State the
Riesz Representation Theorem for positive linear functionals on C(K). Describe, without
proof, the dual space M(K) of C(K).

Let H be a non-zero complex Hilbert space. Let A be a commutative, unital C∗-
subalgebra of B(H) and let K = ΦA. Prove that there is a norm-decreasing, unital
∗-homomorphism Ψ: L∞(K) → B(H) such that Ψ(T̂ ) = T for all T ∈ A, where T 7→ T̂ is
the Gelfand map A → C(K).

Let T ∈ B(H) be a normal operator, and let K = σ(T ). Show that there is a
norm-decreasing, unital ∗-homomorphism Ψ: L∞(K) → B(H) such that Ψ(z) = T , where
z(λ) = λ for all λ ∈ K. Show that if K ⊂ T = {λ ∈ C : |λ| = 1}, then T is unitary.
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