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1

(a) Consider the following semilinear equation for u : R2 → R,

tx
∂2u

∂t2
− ∂2u

∂x2
+

(
∂u

∂t

)2

= 0 . (∗)

(i) Find the region(s) in R2 where (∗) is hyperbolic.
(ii) Find functions p = p(t) and q = q(x) such that the characteristic surfaces are

curves of constant p± q.

(iii) Consider equation (∗) with the data

u(t0, x) = sin(x) , ut(t0, x) = 0 , x ∈ R . (∗∗)

For which (t0, x0) ∈ R2 does the Cauchy–Kovalevskaya theorem imply that
the above initial value problem, (∗) and (∗∗), has an analytic solution in a
neighbourhood of (t0, x0)?

(b) (i) Define what it means for a function u ∈ L1
loc(R) to have a weak derivative.

(ii) Does the function

u : (−π, π) → R : x 7→ sin(|x|)

have a weak derivative? Justify your answer.

(c) (i) State the Gagliardo-Nirenberg-Sobolev inequality for W 1,p(Rn).

(ii) Let U ⊂ Rn be open and bounded with smooth boundary and 1 ⩽ p < n.
Use your answer from part (c.i) to show that there exist positive constants
C,C ′ such that

C∥Du∥Lp(U) ⩽ ∥u∥W 1,p(U) ⩽ C ′∥Du∥Lp(U) , ∀u ∈W 1,p
0 (U) .

(d) (i) Consider the BVP {
Lu = f in U ,

u = 0 on ∂U ,
(†)

for L a uniformly elliptic operator and U ⊂ Rn an open, bounded set with
C1−boundary. State the Fredholm Alternative for (†).

(ii) Let U = (0, 2π) ⊂ R and define the operator

Lu :=
d2u

dx2
+ u .

Consider the boundary value problem

{
Lu = f in U ,
u = 0 on ∂U .

(††)

Use your answer from part (d.i) to determine whether a solution to (††) exists
when f(x) = cos(x). [40]

Part III, Paper 105



3

2 Let I = (0, 1) ⊂ R and 1 < p <∞.

(a) Given u ∈ Lp(I) define

Au(x) =
1

x

∫ x

0
u(t)dt , for x ∈ (0, 1) .

Show that Au ∈ Lp(I) with

∥Au∥Lp(I) ⩽
p

p− 1
∥u∥Lp(I) .

[Hint: you may wish to consider the function ϕ(x) =
∫ x
0 u(t)dt and estimate ∥Au∥Lp

in terms of ϕ and its derivatives. Note also the identity x−pdx = −1
p−1d(x

1−p).]

(b) Let u ∈W 1,p(I) with trace T (u)|x=0 = u(0) = 0. Show that u(x)
x ∈ Lp(I) with

∥∥∥∥
u(x)

x

∥∥∥∥
Lp(I)

⩽ p

p− 1
∥u′∥Lp(I)

where u′ = du
dx .

(c) Let f ∈ L2(I) such that f(x)
x ∈ L2(I). Consider the boundary value problem





−d2u

dx2
+
u(x)

x2
− du

dx
=
f(x)

x2
, for x ∈ I ,

u(0) = 0 , u′(1) = 0 .

(†)

Set H =
{
v ∈ H1(I) : T (v)|x=0 = v(0) = 0

}
.

(i) Show that H is a Hilbert space with the standard H1–inner product.

(ii) Show that if u ∈ H then u(x)
x ∈ L2(I) .

(iii) Suppose there exists a function u ∈ H2(I) satisfying (†) a.e. in I. Show that

∫ 1

0
u′v′dx+

∫ 1

0

uv

x2
dx−

∫ 1

0
u′vdx =

∫ 1

0

fv

x2
dx (††)

for all v ∈ H.

(iv) Prove that there exists a unique u ∈ H satisfying (††).

[You may assume without proof the Trace and Lax Milgram Theorems, but you must
show the Theorems apply.] [30]
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3 Let U ⊂ R3 be open, and bounded with smooth boundary, and let T > 0 be fixed.
Define UT := (0, T )×U , Σt := {t}×U , ∂∗UT := [0, T ]×∂U . Given ψ0 ∈ H1

0 (U), ψ1 ∈ L2(U)
and f ∈ L2(UT ), consider the initial boundary value problem





utt −∆u = f in UT ,
u = ψ0 , ut = ψ1 on Σ0 ,

u = 0 on ∂∗UT .
(⋄)

Let XT = L∞((0, T );H1
0 (U)) ∩W 1,∞((0, T );L2(U)) and equip this space with the norm

∥u∥XT
:= ∥u∥L∞

t H1
x
+ ∥ut∥L∞

t L2
x
= ess sup

t∈(0,T )

(
∥u(t, ·)∥H1(Σt) + ∥ut(t, ·)∥L2(Σt)

)
.

You may assume that a unique weak solution u ∈ XT to (⋄) exists satisfying

∥u∥XT
⩽ C0

(
∥ψ0∥H1(Σ0) + ∥ψ1∥L2(Σ0) + ∥f∥L2(UT )

)
,

for some constant C0 depending only on U and T .

(a) Let p1, . . . , pn ∈ (0,∞) such that
∑n

i=1
1
pi

= 1. Prove that for measurable functions
f1, . . . , fn defined on U

∥∥∥
n∏

i=1

fi

∥∥∥
L1(U)

⩽
n∏

i=1

∥∥∥fi
∥∥∥
Lpi (U)

.

[You may assume the standard Hölder inequality for the product of two functions.]

(b) Let w ∈ XT . Show that w2 sin(w) ∈ L2(UT ) with

∥w2 sin(w)∥L2(UT ) ⩽ βT
1
2 ∥w∥2L∞

t H1
x

for some β > 0 depending only on U . If also w̃ ∈ XT , show that

∥w2 sin(w)− w̃2 sin(w̃)∥L2(UT )

⩽ γT
1
2 ∥w − w̃∥L∞

t H1
x

(
∥w∥L∞

t H1
x
+ ∥w∥2L∞

t H1
x
+ ∥w̃∥L∞

t H1
x
+ ∥w̃∥2L∞

t H1
x

)

for some γ > 0 depending only on U .

(c) Fix ψ0 ∈ H1
0 (U) and ψ1 ∈ L2(U). Let

Xb,τ = {u ∈ Xτ : ∥u∥Xτ ⩽ b}.

Let A be the map which takes w ∈ Xb,τ to the unique weak solution u ∈ Xτ of (⋄)
with f given by f = w2 sin(w). Show that A : Xb,τ → Xb,τ is a contraction map
provided b > 0 is sufficiently large and 0 < τ < T is sufficiently small.

(d) Deduce that the semilinear wave equation:





utt −∆u = u2 sin(u) in Uτ ,
u = ψ0 , ut = ψ1 on Σ0 ,

u = 0 on ∂∗Uτ ,

has a weak solution u ∈ Xτ provided τ ∈ (0, T ) is sufficiently small. [30]
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