MAMA/102

MAT3 MATHEMATICAL TRIPOS Part III

Friday 31 May 2024 $\,$ 9:00 pm to 12:00 pm

PAPER 102

LIE ALGEBRAS AND THEIR REPRESENTATIONS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) (i) Let $\varphi : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(V)$ be a finite-dimensional representation of $\mathfrak{sl}_2(\mathbb{C})$. Define the *Casimir element*, $\Omega \in \mathfrak{gl}(V)$. You may assume that Ω commutes with $\varphi(x)$ for all $x \in \mathfrak{sl}_2(\mathbb{C})$.

State Schur's lemma. If V is irreducible, show that Ω acts on V by a scalar. Find this scalar in terms of the highest weight of V.

(ii) Let $\varphi : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(V)$ be a finite-dimensional representation of $\mathfrak{sl}_2(\mathbb{C})$ and let W be a subrepresentation. Prove Weyl's theorem in the special case where W has codimension 1 in V.

(b) Let $a, b \in \mathbb{C}$ and define a vector space W over \mathbb{C} with (countably infinite) basis

$$\dots, w_{-2}, w_{-1}, w_0, w_1, w_2, \dots$$

Define linear transformations h_W , f_W of W by the rules $h_W(w_i) = (a + 2i)w_i$ and $f_W(w_i) = w_{i-1}$, for all $i \in \mathbb{Z}$.

(i) Show that, subject to the constraint $e_W(w_0) = bw_1$, there is a unique way to define e_W so as to define an $\mathfrak{sl}_2(\mathbb{C})$ -action on W.

(ii) Show that any non-zero $\mathfrak{sl}_2(\mathbb{C})$ -subrepresentation of W contains w_i for some i.

(iii) Show that W is reducible (meaning that W is not irreducible) if and only if b = ja + j(j+1) for some $j \in \mathbb{Z}$.

2 (a) Let $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite-dimensional representation of the Lie algebra \mathfrak{g} . What is the *trace form* for V? Define the *Killing form*. What does it mean to say the form is \mathfrak{g} -invariant?

(b) Let \mathfrak{g} be a finite-dimensional complex semisimple Lie algebra and \mathfrak{t} a Cartan subalgebra. For each root $\alpha \in \mathfrak{t}^*$, prove the existence of an \mathfrak{sl}_2 -subalgebra $\mathfrak{m}_{\alpha} = \langle e_{\alpha}, h_{\alpha}, f_{\alpha} \rangle$ with $e_{\alpha} \in \mathfrak{g}_{\alpha}, f_{\alpha} \in \mathfrak{g}_{-\alpha}$ and $h_{\alpha} \in \mathfrak{t}$ satisfying $[h_{\alpha}, e_{\alpha}] = 2e_{\alpha}, [h_{\alpha}, f_{\alpha}] = -2f_{\alpha}$ and $[e_{\alpha}, f_{\alpha}] = h_{\alpha}$. [You may assume that the restriction of the Killing form to $\mathfrak{t} \times \mathfrak{t}$ is nondegenerate. You may use Lie's theorem.]

(c) Let \mathfrak{g} be a Lie algebra and V a finite-dimensional representation of \mathfrak{g} .

(i) Show that the vector space $\mathfrak{g} \oplus V$ is a Lie algebra under the Lie bracket

$$[(x, v), (x', v')] = ([x, x'], xv' - x'v),$$

for $x, x' \in \mathfrak{g}, v, v' \in V$. Denote this Lie algebra by $\mathfrak{g} \ltimes V$.

(ii) Using this construction, give an example of a Lie algebra \mathfrak{h} such that the derived algebra $[\mathfrak{h}, \mathfrak{h}]$ equals \mathfrak{h} and $Z(\mathfrak{h}) = \{0\}$ but \mathfrak{h} is neither simple nor the direct product of simple Lie algebras.

(iii) Express the Killing form K on $\mathfrak{g} \ltimes V$ in terms of the Killing form κ on \mathfrak{g} . When is the Killing form K on $\mathfrak{g} \ltimes V$ non-degenerate? [Hint: you may wish to use the Cartan-Killing criterion.] 3

(a) (i) Let (Φ, E) be a root system. What is a *Weyl chamber*? What does it mean for a subset $\Delta \subseteq \Phi$ to be a *root basis*? Briefly describe the construction of root bases Δ_{γ} for certain elements γ (proofs are not required).

(ii) If α is positive but not simple, show that $\alpha - \beta$ is a root (necessarily positive) for some $\beta \in \Delta$. Deduce that every positive root can be written in the form $\alpha_1 + \cdots + \alpha_k$ ($\alpha_i \in \Delta$, not necessarily distinct) in such a way that each partial sum $\alpha_1 + \cdots + \alpha_i$ is a root.

Show also that if α is simple then the reflection w_{α} permutes the positive roots other than α .

(b) Consider the Lie algebra

$$\mathfrak{g} = \mathfrak{so}_6 = \{ x \in \mathfrak{gl}_6(\mathbb{C}) : xJ + Jx^T = 0 \},\$$

where

$$J = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Let \mathfrak{t} be the space of diagonal matrices in \mathfrak{g} , and let Φ be the set of roots of \mathfrak{g} with respect to \mathfrak{t} .

In parts (i), (ii), (iii), (iv) your answers can be brief.

(i) Explicitly describe the elements of Φ as elements of \mathfrak{t}^* .

(ii) Find a root basis $\Delta \subseteq \Phi$. Draw and label the Dynkin diagram of Φ .

(iii) For each element $\alpha_i \in \Delta$, explicitly describe the image of elements of Δ under the simple reflection w_{α_i} .

(iv) Describe an automorphism of Φ that is not given by an element of the Weyl group.

(v) Explain briefly why $\mathfrak{so}_6 \cong \mathfrak{sl}_4$. Results from the course can be quoted if they are clearly stated.

4 Let Φ be a root system in the inner product space E.

(i) Let $\alpha, \beta \in \Phi$ with $\beta \neq \pm \alpha$. Prove the finiteness lemma, namely (in the usual notation) that

$$\langle \alpha, \beta^{\vee} \rangle . \langle \beta, \alpha^{\vee} \rangle \in \{0, 1, 2, 3\}$$

(ii) Show that the only rank 2 root systems are, up to isomorphism, types A_2 , B_2 , G_2 and $A_1 \times A_1$.

(iii) What does it mean for an irreducible root system Φ to be *simply laced*? Show that Φ is simply laced if and only if $\langle \alpha, \beta^{\vee} \rangle \in \{0, \pm 1\}$ for all α, β with $\beta \neq \pm \alpha$.

(iv) Show that if Φ is a root system and $\alpha, \beta \in \Phi$ are roots with $\alpha \neq \pm \beta$ then the restriction of $w_{\alpha}w_{\beta}$ to the span of α and β is a rotation, and determine the angle of this rotation. Deduce that the subgroup of the Weyl group W generated by w_{α}, w_{β} is a dihedral group with rotational subgroup generated by $w_{\alpha}w_{\beta}$. Hence, or otherwise, find the Weyl groups of the rank 2 root systems found in (ii).

5 (a) (i) Let \mathfrak{g} be a complex semisimple Lie algebra and let \mathfrak{t} be a Cartan subalgebra. Given $\lambda \in \mathfrak{t}^*$ briefly define the Verma module $M(\lambda)$ associated to λ and state its universal property. [You may assume the existence of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$.]

Explain briefly why there exists a unique irreducible highest weight module $V = V(\lambda)$ with highest weight λ . State a condition for V to be finite-dimensional.

(ii) Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$. Take $\lambda = -d$ where d > 0. Show that $M(\lambda)$ is an infinitedimensional irreducible \mathfrak{g} -module.

(b) State the Weyl character formula and the Weyl denominator formula, briefly defining the notation that you use.

Show that the character $\operatorname{ch}(V(k\rho)) = e^{k\rho} \prod_{\alpha \in \Phi^+} (1 + e^{-\alpha} + \dots + e^{-k\alpha})$ for any $k \in \mathbb{N}$ and where ρ denotes half the sum of the positive roots.

(c) Let $\mathfrak{g} = \mathfrak{so}_5(\mathbb{C})$, and assume α_1 is a short root.

(i) Sketch the root system of type B_2 , and indicate the fundamental dominant weights ω_1 , ω_2 . Let $\lambda = a\omega_1 + b\omega_2$ be a dominant weight. Using the Weyl dimension formula, find a formula for dim $V(\lambda)$ in terms of a and b. [You are not asked to prove the dimension formula.]

(ii) Let V be the defining 5-dimensional representation of \mathfrak{g} . Explain briefly why $V \cong V(\omega_2)$. Explain briefly why $V(2\omega_2)$ is a subrepresentation of $V \otimes V$ and compute its dimension.

END OF PAPER

Part III, Paper 102