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1 (a) (i) Let φ : sl2(C) → gl(V ) be a finite-dimensional representation of sl2(C).
Define the Casimir element, Ω ∈ gl(V ). You may assume that Ω commutes with φ(x) for
all x ∈ sl2(C).

State Schur’s lemma. If V is irreducible, show that Ω acts on V by a scalar. Find
this scalar in terms of the highest weight of V .

(ii) Let φ : sl2(C) → gl(V ) be a finite-dimensional representation of sl2(C) and
let W be a subrepresentation. Prove Weyl’s theorem in the special case where W has
codimension 1 in V .

(b) Let a, b ∈ C and define a vector space W over C with (countably infinite) basis

. . . , w−2, w−1, w0, w1, w2, . . .

Define linear transformations hW , fW of W by the rules hW (wi) = (a + 2i)wi and
fW (wi) = wi−1, for all i ∈ Z.

(i) Show that, subject to the constraint eW (w0) = bw1, there is a unique way to
define eW so as to define an sl2(C)-action on W .

(ii) Show that any non-zero sl2(C)-subrepresentation of W contains wi for some i.

(iii) Show that W is reducible (meaning that W is not irreducible) if and only if
b = ja+ j(j + 1) for some j ∈ Z.

2 (a) Let φ : g → gl(V ) be a finite-dimensional representation of the Lie algebra g.
What is the trace form for V ? Define the Killing form. What does it mean to say the
form is g-invariant?

(b) Let g be a finite-dimensional complex semisimple Lie algebra and t a Cartan
subalgebra. For each root α ∈ t∗, prove the existence of an sl2-subalgebra mα = ⟨eα, hα, fα⟩
with eα ∈ gα, fα ∈ g−α and hα ∈ t satisfying [hα, eα] = 2eα, [hα, fα] = −2fα and
[eα, fα] = hα. [You may assume that the restriction of the Killing form to t × t is non-
degenerate. You may use Lie’s theorem.]

(c) Let g be a Lie algebra and V a finite-dimensional representation of g.

(i) Show that the vector space g⊕ V is a Lie algebra under the Lie bracket

[(x, v), (x′, v′)] = ([x, x′], xv′ − x′v),

for x, x′ ∈ g, v, v′ ∈ V . Denote this Lie algebra by g⋉ V .

(ii) Using this construction, give an example of a Lie algebra h such that the derived
algebra [h, h] equals h and Z(h) = {0} but h is neither simple nor the direct product of
simple Lie algebras.

(iii) Express the Killing form K on g ⋉ V in terms of the Killing form κ on g.
When is the Killing form K on g ⋉ V non-degenerate? [Hint: you may wish to use the
Cartan–Killing criterion.]
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(a) (i) Let (Φ, E) be a root system. What is a Weyl chamber? What does it mean
for a subset ∆ ⊆ Φ to be a root basis? Briefly describe the construction of root bases ∆γ

for certain elements γ (proofs are not required).

(ii) If α is positive but not simple, show that α − β is a root (necessarily positive)
for some β ∈ ∆. Deduce that every positive root can be written in the form α1 + · · ·+αk

(αi ∈ ∆, not necessarily distinct) in such a way that each partial sum α1 + · · · + αi is a
root.

Show also that if α is simple then the reflection wα permutes the positive roots
other than α.

(b) Consider the Lie algebra

g = so6 = {x ∈ gl6(C) : xJ + JxT = 0},

where

J =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




Let t be the space of diagonal matrices in g, and let Φ be the set of roots of g with respect
to t.

In parts (i), (ii), (iii), (iv) your answers can be brief.

(i) Explicitly describe the elements of Φ as elements of t∗.

(ii) Find a root basis ∆ ⊆ Φ. Draw and label the Dynkin diagram of Φ.

(iii) For each element αi ∈ ∆, explicitly describe the image of elements of ∆ under
the simple reflection wαi .

(iv) Describe an automorphism of Φ that is not given by an element of the Weyl
group.

(v) Explain briefly why so6 ∼= sl4. Results from the course can be quoted if they are
clearly stated.
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4 Let Φ be a root system in the inner product space E.

(i) Let α, β ∈ Φ with β ̸= ±α. Prove the finiteness lemma, namely (in the usual
notation) that

⟨α, β∨⟩.⟨β, α∨⟩ ∈ {0, 1, 2, 3}.

(ii) Show that the only rank 2 root systems are, up to isomorphism, types A2, B2,
G2 and A1 ×A1.

(iii) What does it mean for an irreducible root system Φ to be simply laced? Show
that Φ is simply laced if and only if ⟨α, β∨⟩ ∈ {0,±1} for all α, β with β ̸= ±α.

(iv) Show that if Φ is a root system and α, β ∈ Φ are roots with α ̸= ±β then
the restriction of wαwβ to the span of α and β is a rotation, and determine the angle of
this rotation. Deduce that the subgroup of the Weyl group W generated by wα, wβ is a
dihedral group with rotational subgroup generated by wαwβ. Hence, or otherwise, find
the Weyl groups of the rank 2 root systems found in (ii).

5 (a) (i) Let g be a complex semisimple Lie algebra and let t be a Cartan subalgebra.
Given λ ∈ t∗ briefly define the Verma module M(λ) associated to λ and state its universal
property. [You may assume the existence of the universal enveloping algebra U(g).]

Explain briefly why there exists a unique irreducible highest weight module V =
V (λ) with highest weight λ. State a condition for V to be finite-dimensional.

(ii) Let g = sl2(C). Take λ = −d where d > 0. Show that M(λ) is an infinite-
dimensional irreducible g-module.

(b) State the Weyl character formula and the Weyl denominator formula, briefly
defining the notation that you use.

Show that the character ch(V (kρ)) = ekρ Πα∈Φ+(1+e−α+ · · ·+e−kα) for any k ∈ N
and where ρ denotes half the sum of the positive roots.

(c) Let g = so5(C), and assume α1 is a short root.

(i) Sketch the root system of type B2, and indicate the fundamental dominant
weights ω1, ω2. Let λ = aω1 + bω2 be a dominant weight. Using the Weyl dimension
formula, find a formula for dimV (λ) in terms of a and b. [You are not asked to prove the
dimension formula.]

(ii) Let V be the defining 5-dimensional representation of g. Explain briefly why
V ∼= V (ω2). Explain briefly why V (2ω2) is a subrepresentation of V ⊗ V and compute its
dimension.
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