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i. Define each of the following module properties: Noetherian, Free, Flat, Projective.

[ If we learned more than one characterization of a certain property, choose one. ]

ii. Prove or disprove each of the following statements (for a ring R):

(a) If M is a finitely generated R-module and N is a noetherian R-module then
M ⊗R N is a noetherian R-module.

(b) If A and B are nonzero algebras over a field k such that A ⊗k B is finitely
generated as a k-algebra then each of A and B is finitely generated as a
k-algebra.

(c) For R-modules M and N , if M ⊗R N ∼= Rn for some integer n ⩾ 1 then M
and N are projective R-modules.

(d) For every choice of three C-algebra homomorphisms as in the diagram below

C[X]

C[T ] // C[X,Y ]

::

$$
C[Y ]

if C[X] and C[Y ] are flat C[T ]-modules, then C[X] ⊗C[X,Y ] C[Y ] is a flat
C[T ]-module.
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i. Let R be a ring such that every nonzero proper ideal of R is maximal. What is the
maximal possible cardinality of mspecR?

ii. Define the Jacobson radical J (R) of a ring R.
Let A ⊂ B be an integral extension of rings. Prove that J (A) = J (B) ∩A.

iii. Give an example of a nonzero module M over a ring R, and a positive integer k
such that M⊗k is the zero module, and prove that such an R-module M must not
be finitely generated (justify your answer).

iv. Is every maximal ideal of A = C [T1, T2, . . . ] of the form (T1 − x1, T2 − x2, . . . ),
where xi ∈ C for all i ⩾ 1?

[ Hint: First prove that for a field extension L/K and an element t ∈ L,
transcendental over K, and distinct x1, . . . , xn ∈ K, the set { 1

t−x1
, . . . , 1

t−xn
} is

linearly independent over K. ]
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i. Give an example of finite dimensional real vector spaces V,U,W and a non-injective
R-linear map f : V ⊗R U → W such that f (v1 ⊗ u1) ̸= f (v2 ⊗ u2) for all v1, v2 ∈ V
and u1, u2 ∈ U such that v1 ⊗ u1 ̸= v2 ⊗ u2. Briefly explain why your example has
the required properties.

ii. Prove or disprove: If S is a multiplicative subset of an integral domain R, then for
every subring A of S−1R there is a multiplicative subset T of R such that A = T−1R
(where we view localizations of R as subrings of FracR in the natural way).

iii. Let F ⊊ K be fields. Prove that the ring K ⊗F K is not a field.

iv. Let (R,m) be a noetherian local ring, and x ∈ m not a zero divisor, such that
R/ (x) is an integral domain. Prove that R is an integral domain.
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i. State both the weak and strong versions of the nullstellensatz, and deduce the strong
version from the weak version.

ii.

(a) Find f ∈ R [T1, T2] such that for A = R [T1, T2] / (f), t1 = T1 + (f) and
t2 = T2 + (f), the contraction map specA → specR[t1] is not surjective.

(b) Let f ∈ R [T1, . . . , Tn], deg f > 0, A = R [T1, . . . , Tn] / (f), and write
ti = Ti + (f) for each 1 ⩽ i ⩽ n.
Prove that there is a matrix M ∈ Mn×n (Z) such that (I) detM ̸= 0, (II)

supi,j |Mij | ⩽ deg f , and (III) for




y1
...
yn


 = M




t1
...
tn


, the contraction

map specA → specR [y1, . . . , yn−1] is surjective.

iii. Let A ⊂ B be an integral extension, and let I ⊂ J be ideals of B such that
I ∩A = J ∩A and I is prime. Prove that I = J . [ Hint: Use a similar claim from
the lectures. ]

iv. A Jacobson ring is a ring R such that for every ideal I of R,
√
I is equal to the

intersection of all maximal ideals of R containing I.
Let R ⊂ S be an integral extension of rings such that R is a Jacobson ring. Prove
that S is a Jacobson ring.
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i. Define the height ht I of a proper ideal I of a ring R.

State and prove Krull’s height theorem.

ii. State and prove the Hilbert–Serre Theorem.

iii. Assume that R is a noetherian ring of Krull dimension d < ∞. Let 0 ⩽ n ⩽ d be a
non-negative integer such that |{p ∈ specR | ht p = n}| < ∞. Prove that n ∈ {0, d}.
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