MAMA/356, NST3AS/356, MAAS/356

MAT3 MATHEMATICAL TRIPOS Part III

Thursday, 8 June, $2023 \quad 9{:}00 \ \mathrm{am}$ to $11{:}00 \ \mathrm{am}$

PAPER 356

STOCHASTIC PROCESSES IN BIOLOGY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Consider a bacterium with position X(t) evolving according to the stochastic differential equation

$$dX(t) = \alpha dt + \sqrt{2D} dW(t), \tag{1}$$

in a domain $\Omega = (0, L)$ with a reflecting boundary at x = L and a target that the bacterium wishes to find at x = 0. The constant $\alpha \in [-\bar{\alpha}, \bar{\alpha}]$ regulates the search strategy.

- a) Denote by Q(y,t) the probability that the bacterium has not yet found the target by time t, given that $X(0) = y \in \Omega$. What initial boundary value problem does Q satisfy?
- b) Denote by T(y) the time it takes for the bacterium to find the target, given that $X(0) = y \in \Omega$:

$$T(y) = \inf\{t \ge 0 : X(t) = 0 \,|\, X(0) = y\}.$$

What is the expected time $\tau(y) = \mathbb{E}[T(y)]$? Find the value of α that minimises $\tau(L)$ and compute $\tau_0 := \lim_{\alpha \to 0} \tau(L)$.

For the rest of the question, consider a different model for the motion of the bacterium, where its position $X(t) \in \Omega$ evolves as

$$dX(t) = V(t)dt,$$
(2)

and $V(t) \in \{-s, s\}$ is its velocity, which changes sign according to a Poisson process with rate $\lambda > 0$. We still consider the same target at x = 0 and a reflecting boundary at x = L (that is, the bacterium reflects its velocity at x = L).

- c) Denote by $Q^{\pm}(y,t)$ the probability that the bacterium has not yet found the target by time t, given that $X(0) = y \in \Omega$ and $V(0) = \pm s$. Write down the system of equations and boundary conditions satisfied by Q^+ and Q^- .
- d) Denote by $T^{\pm}(y)$ the time it takes for the bacterium to find the target:

$$T^{\pm}(y) = \inf\{t \ge 0 : X(t) = 0, V(t) = -s \mid X(0) = y, V(0) = \pm s\}.$$

What are the expected times $\tau^{\pm}(y) = \mathbb{E}[T^{\pm}(y)]$?

- e) Consider the scaling $s \to \infty$, $\lambda \to \infty$ of (2) with $\frac{s^2}{2\lambda} = D$ fixed. Assume that $V(0) = \pm s$ with equal probability. Show that, in this limit, $\tau^{\pm}(L) = \tau_0$, with τ_0 from (b). Comment on why this is the case.
- f) Write a stochastic simulation algorithm of (2) with a fixed timestep $\Delta t > 0$ to estimate $\tau^+(y)$.

UNIVERSITY OF

2 Consider N molecules of chemical species A in the one-dimensional domain $\Omega = [0, L]$. Divide the domain into m compartments of length h = L/m. Let $A_i(t)$ be the number of molecules of A at time t in the *i*th compartment centered at $x_i = hi - h/2$ for i = 1, 2, ..., m. Consider a compartment-based model for the movement of the molecules given as the following system of chemical reactions

$$\varnothing \underset{k_1^-}{\leftarrow} A_1 \underset{k_2^-}{\overset{k_1^+}{\rightleftharpoons}} A_2 \underset{k_3^-}{\overset{k_2^+}{\rightleftharpoons}} \cdots A_{m-1} \underset{k_m^-}{\overset{k_{m-1}^+}{\rightleftharpoons}} A_m.$$
 (1)

- a) Let $p(\mathbf{a}, t)$, with $\mathbf{a} = (a_1, a_2, \dots, a_m) \in \mathbb{Z}_{\geq}^m$, be the probability that $A_i(t) = a_i$. Write the chemical master equation for $p(\mathbf{a}, t)$.
- b) Define the mean number of molecules in the ith compartment at time t as

$$M_i(t) = \langle a_i, p(\mathbf{a}, t) \rangle_{\mathbf{a}} = \sum_{a_1=0}^{\infty} \sum_{a_2=0}^{\infty} \dots \sum_{a_m=0}^{\infty} a_i p(\mathbf{a}, t), \quad \text{for } i = 1, 2, \dots, m.$$

Show that

$$\frac{\mathrm{d}M_i}{\mathrm{d}t} = k_{i-1}^+ M_{i-1} - (k_i^+ + k_i^-)M_i + k_{i+1}^- M_{i+1}, \qquad \text{for } i = 2, \dots, m-1,$$

and derive the equations satisfied by M_1 and M_m .

c) Consider the limit $h \to 0, x_i \to x$, such that $M_i(t) \to c(x,t)$, where c(x,t) is a continuous function defined for all $x \in \Omega$. Determine the rates k_i^{\pm} that lead to the following partial differential equation

$$\frac{\partial c}{\partial t}(x,t) = D \frac{\partial^2 c}{\partial x^2}(x,t) - \frac{\partial}{\partial x} \left[v(x)c(x,t) \right], \tag{2}$$

where D > 0 and v(x) is a smooth function of x. Derive the boundary conditions for (2) at x = 0, L.

d) Let $X(t) \in \Omega$ be the position of one molecule of A at time t. Interpreting c(x,t) in (2) as the probability density of X(t), what Itô stochastic differential equation does X(t) satisfy?

Write down a numerical scheme for the time evolution of X(t) when v(x) = x, which takes into account the probability of X(t) leaving Ω through x = 0 between $[t, t + \Delta t)$.

e) Now suppose that we modify (1) such that only one molecule of A at most is allowed per compartment, that is, $A_i(t)$ can only take values 0 or 1. If one molecule attempts to jump to an already occupied compartment, the jump is aborted. Hence the rates found in (c) are modified to

$$\tilde{k}_i^+ = (1 - a_{i+1})k_i^+, \quad \tilde{k}_i^- = (1 - a_{i-1})k_i^-,$$

with the convention that $a_0 = 0$. Make the simplifying assumption that the probabilities of two adjacent sites being occupied are independent of each other, that is, $\mathbb{E}[A_i(t)(1 - A_{i\pm 1}(t))] = \mathbb{E}A_i(t)[1 - \mathbb{E}A_{i\pm 1}(t)]$. Show that the resulting partial differential equation for c(x, t) is

$$\frac{\partial c}{\partial t}(x,t) = D \frac{\partial^2 c}{\partial x^2}(x,t) - \frac{\partial}{\partial x} \left[v(x)c(x,t)(1-c(x,t)) \right].$$
(3)

(You are not required to derive boundary conditions in this case.)

Part III, Paper 356

[TURN OVER]

CAMBRIDGE

3 Consider two chemical species X and Y in a reactor of volume V, which are subject to the following system of four chemical reactions:

$$Y + Y \xrightarrow{\alpha_1} X, \quad X + X \xrightarrow{\alpha_2} X, \quad \varnothing \xrightarrow{\alpha_3/\varepsilon} Y, \quad X + Y \xrightarrow{\alpha_4/\varepsilon} X,$$

where $0 < \varepsilon \ll 1$ is a small real number, and $\alpha_1, \alpha_2, \alpha_3$ and α_4 are independent of ε . Let $X(t) \in \mathbb{Z}_{\geq}$ and $Y(t) \in \mathbb{Z}_{\geq}$ be respectively the number of molecules of X and Y at time t, where \mathbb{Z}_{\geq} is the set of non-negative integers. Assume that $X(0) \neq 0$. Let p(x, y, t) be the probability that X(t) = x and that Y(t) = y.

a) Write down the operators \mathcal{L}_0^* and \mathcal{L}_1^* such that the chemical master equation for p(x, y, t) can be written as

$$\frac{\partial}{\partial t}p(x,y,t) = \left(\frac{1}{\varepsilon}\mathcal{L}_0^* + \mathcal{L}_1^*\right)p(x,y,t).$$

Identify the slow chemical reactions and the slow chemical species.

b) Expand the probability into the perturbation series

$$p(x, y, t) = p_0(y|x)p_0(x, t) + \varepsilon p_1(x, y, t) + \cdots,$$

where $p_0(y|x)$ is the probability that Y(t) = y given that X(t) = x, and $p_0(x, t)$ is the probability that X(t) = x.

Determine the difference equation that $p_0(y|x)$ satisfies.

Determine the mean $\langle y, p_0(y|x) \rangle_y = \sum_{y=0}^{\infty} y p_0(y|x)$, and discuss whether this quantity is well-defined. You may use adjoint operators of \mathcal{L}_0^* or \mathcal{L}_1^* without proof.

c) Determine $\lambda_1(x)$ and $\lambda_2(x)$ in terms of $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and V such that the chemical master equation for $p_0(x,t)$ can be written as

$$\frac{\partial}{\partial t}p_0(x,t) = \left([E_x^{-1} - 1]\lambda_1(x) + [E_x^{+1} - 1]\lambda_2(x) \right) p_0(x,t),$$

where $E_x^{\Delta x}$ is defined by $E_x^{\Delta x} f(x) = f(x + \Delta x)$ for any function f. You may use adjoint operators of \mathcal{L}_0^* or \mathcal{L}_1^* without proof.

d) Let

$$m(t) = \left\langle x, p_0(x, t) \right\rangle_x = \sum_{x=0}^{\infty} x p_0(x, t).$$

Determine the ordinary differential equation that m(t) satisfies.

In this differential equation, assume that $\langle f(x), p_0(x,t) \rangle_x = f(\langle x, p_0(x,t) \rangle_x)$ for any function f. Then, take the limit $V \to \infty$ with $\lim_{V\to\infty} m(t)/V = \bar{x}(t)$. Determine $\lim_{t\to\infty} \bar{x}(t)$.

e) Write down a stochastic simulation algorithm that can be used to calculate the timeevolution of the slow species without simulating the fast reactions.

END OF PAPER

Part III, Paper 356