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1 Consider a bacterium with position X(t) evolving according to the stochastic
differential equation

dX(t) = αdt+
√

2DdW (t), (1)

in a domain Ω = (0, L) with a reflecting boundary at x = L and a target that the bacterium
wishes to find at x = 0. The constant α ∈ [−ᾱ, ᾱ] regulates the search strategy.

a) Denote by Q(y, t) the probability that the bacterium has not yet found the target by
time t, given that X(0) = y ∈ Ω. What initial boundary value problem does Q satisfy?

b) Denote by T (y) the time it takes for the bacterium to find the target, given that
X(0) = y ∈ Ω:

T (y) = inf{t > 0 : X(t) = 0 |X(0) = y}.
What is the expected time τ(y) = E[T (y)]? Find the value of α that minimises τ(L)
and compute τ0 := limα→0 τ(L).

For the rest of the question, consider a different model for the motion of the bacterium,
where its position X(t) ∈ Ω evolves as

dX(t) = V (t)dt, (2)

and V (t) ∈ {−s, s} is its velocity, which changes sign according to a Poisson process with
rate λ > 0. We still consider the same target at x = 0 and a reflecting boundary at x = L
(that is, the bacterium reflects its velocity at x = L).

c) Denote by Q±(y, t) the probability that the bacterium has not yet found the target by
time t, given that X(0) = y ∈ Ω and V (0) = ±s. Write down the system of equations
and boundary conditions satisfied by Q+ and Q−.

d) Denote by T±(y) the time it takes for the bacterium to find the target:

T±(y) = inf{t > 0 : X(t) = 0, V (t) = −s |X(0) = y, V (0) = ±s}.

What are the expected times τ±(y) = E[T±(y)]?

e) Consider the scaling s → ∞, λ → ∞ of (2) with s2

2λ = D fixed. Assume that
V (0) = ±s with equal probability. Show that, in this limit, τ±(L) = τ0, with τ0
from (b). Comment on why this is the case.

f) Write a stochastic simulation algorithm of (2) with a fixed timestep ∆t > 0 to estimate
τ+(y).
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2 Consider N molecules of chemical species A in the one-dimensional domain
Ω = [0, L]. Divide the domain into m compartments of length h = L/m. Let Ai(t) be the
number of molecules of A at time t in the ith compartment centered at xi = hi− h/2 for
i = 1, 2, . . . ,m. Consider a compartment-based model for the movement of the molecules
given as the following system of chemical reactions

∅←
k−1

A1

k+1
�
k−2

A2

k+2
�
k−3

· · ·Am−1
k+m−1

�
k−m

Am. (1)

a) Let p(a, t), with a = (a1, a2, . . . , am) ∈ Zm
> , be the probability that Ai(t) = ai. Write

the chemical master equation for p(a, t).

b) Define the mean number of molecules in the ith compartment at time t as

Mi(t) = 〈ai, p(a, t)〉a =
∞∑

a1=0

∞∑

a2=0

. . .

∞∑

am=0

aip(a, t), for i = 1, 2, . . . ,m.

Show that

dMi

dt
= k+i−1Mi−1 − (k+i + k−i )Mi + k−i+1Mi+1, for i = 2, . . . ,m− 1,

and derive the equations satisfied by M1 and Mm.

c) Consider the limit h → 0, xi → x, such that Mi(t) → c(x, t), where c(x, t) is a
continuous function defined for all x ∈ Ω. Determine the rates k±i that lead to the
following partial differential equation

∂c

∂t
(x, t) = D

∂2c

∂x2
(x, t)− ∂

∂x
[v(x)c(x, t)] , (2)

where D > 0 and v(x) is a smooth function of x. Derive the boundary conditions for
(2) at x = 0, L.

d) Let X(t) ∈ Ω be the position of one molecule of A at time t. Interpreting c(x, t) in (2)
as the probability density of X(t), what Itô stochastic differential equation does X(t)
satisfy?

Write down a numerical scheme for the time evolution of X(t) when v(x) = x, which
takes into account the probability of X(t) leaving Ω through x = 0 between [t, t+∆t).

e) Now suppose that we modify (1) such that only one molecule of A at most is allowed
per compartment, that is, Ai(t) can only take values 0 or 1. If one molecule attempts
to jump to an already occupied compartment, the jump is aborted. Hence the rates
found in (c) are modified to

k̃+i = (1− ai+1)k
+
i , k̃−i = (1− ai−1)k

−
i ,

with the convention that a0 = 0. Make the simplifying assumption that the
probabilities of two adjacent sites being occupied are independent of each other, that
is, E[Ai(t)(1 − Ai±1(t))] = EAi(t)[1 − EAi±1(t)]. Show that the resulting partial
differential equation for c(x, t) is

∂c

∂t
(x, t) = D

∂2c

∂x2
(x, t)− ∂

∂x
[v(x)c(x, t)(1− c(x, t))] . (3)

(You are not required to derive boundary conditions in this case.)
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3 Consider two chemical species X and Y in a reactor of volume V , which are subject
to the following system of four chemical reactions:

Y + Y
α1−→ X, X +X

α2−→ X, ∅ α3/ε−−−→ Y, X + Y
α4/ε−−−→ X,

where 0 < ε� 1 is a small real number, and α1, α2, α3 and α4 are independent of ε. Let
X(t) ∈ Z> and Y (t) ∈ Z> be respectively the number of molecules of X and Y at time t,
where Z> is the set of non-negative integers. Assume that X(0) 6= 0. Let p(x, y, t) be the
probability that X(t) = x and that Y (t) = y.

a) Write down the operators L∗0 and L∗1 such that the chemical master equation for
p(x, y, t) can be written as

∂

∂t
p(x, y, t) =

(
1

ε
L∗0 + L∗1

)
p(x, y, t).

Identify the slow chemical reactions and the slow chemical species.

b) Expand the probability into the perturbation series

p(x, y, t) = p0(y|x)p0(x, t) + εp1(x, y, t) + · · · ,

where p0(y|x) is the probability that Y (t) = y given that X(t) = x, and p0(x, t) is the
probability that X(t) = x.

Determine the difference equation that p0(y|x) satisfies.

Determine the mean 〈y, p0(y|x)〉y =
∑∞

y=0 yp0(y|x), and discuss whether this quantity
is well-defined. You may use adjoint operators of L∗0 or L∗1 without proof.

c) Determine λ1(x) and λ2(x) in terms of α1, α2, α3, α4 and V such that the chemical
master equation for p0(x, t) can be written as

∂

∂t
p0(x, t) =

(
[E−1

x − 1]λ1(x) + [E+1
x − 1]λ2(x)

)
p0(x, t),

where E∆x
x is defined by E∆x

x f(x) = f(x + ∆x) for any function f . You may use
adjoint operators of L∗0 or L∗1 without proof.

d) Let

m(t) =
〈
x, p0(x, t)

〉
x

=
∞∑

x=0

xp0(x, t).

Determine the ordinary differential equation that m(t) satisfies.

In this differential equation, assume that 〈f(x), p0(x, t)〉x = f(〈x, p0(x, t)〉x) for any
function f . Then, take the limit V → ∞ with limV→∞m(t)/V = x̄(t). Determine
limt→∞ x̄(t).

e) Write down a stochastic simulation algorithm that can be used to calculate the time-
evolution of the slow species without simulating the fast reactions.
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