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1 Two nearby spherical colonies of the alga Volvox of radius R swim up to the air-
water interface and hover so their centres are a distance R below the surface, and their
initial lateral separation is x0. Each has a density ρ greater than the density ρw of water,
with ε ≡ (ρ−ρw)/ρw � 1 and keeps itself from sinking under the action of the gravitational
acceleration g by constant up-swimming.

Treating each organism’s effect on the fluid as a downwardly directed point force
due to gravity, and the air-water interface as a stress-free surface, find the equation of
motion for the separation x between the particles as they are each advected laterally by
their mutual flows, recalling that the velocity components for a Stokeslet in free space are

uj =
Fk

8πµ

(
δjk
r

+
rjrk
r3

)
,

where Fk are the components of the force. Express the equation of motion in suitably
rescaled units of space and time so that no material parameters appear explicitly. Show
that the equation of motion for the scaled separation ξ as a function of scaled time τ has
the form of a gradient flow,

dξ

dτ
= −dV (ξ)

dξ
, (1)

for an effective potential V (ξ) that you should find and sketch. Using the far-field behavior
of V (ξ), estimate the time T for the particles to collide, starting from the initial separation
x0. Estimate that time using the values ε = 0.03, R = 200µm and x0 = 5R.

2 An elastic filament of length L, radius a and bending modulus A lies along
the x-axis with its left end at the origin, surrounded by a fluid of viscosity µ at
temperature T . Thermal fluctuations cause small deviations h(x) from its equilibrium
straight configuration. Assuming that the filament is clamped at x = 0 such that
h(0) = hx(0) = 0, find the mean squared displacement of the filament’s tip, and the
autocorrelation function of the tip displacement using resistive force theory to describe
its motion in the fluid. Simplify your answers based on the dominant mode. Estimate
the scale of the fluctuations and the time constant that appears in the autocorrelation
function for microtubules, assuming L = 10µm, a = 0.5µm, and the persistence length is
Lp = 3 mm.
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3 A simple model for the dynamics of biological filaments driven by motor proteins
involves two rigid links of length ` joined together at point A, the left link fixed at the
origin O, constrained to lie in the plane z = 0, as in the figure. A follower force Γ = −Γt̂
acts at the tip of the second link, always parallel to the tangent vector t̂ of the second
link. The two degrees of freedom in the system are the angles θ1(t) and θ2(t) with respect
to the x axis. Elasticity is included by introducing two torsional springs, each with spring
constant k, such that the restoring moments acting on the two rods are −kθ1 at point O
and −k(θ2 − θ1) at A. The system moves in Stokes flow, and the drag forces are assumed
to be concentrated at points A and B only, characterized by a drag coefficient ζ.
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Figure 1: Two-link model.

Use the principle of virtual work in the form

Γ · δrB + FB · δrB + FA · δrA − kθ1δθ1 − k(θ2 − θ1)(δθ2 − δθ1) = 0 (1)

to obtain the equations of motion for the two angles θ1 and θ2. Show by suitable rescaling
of time that the quantity Σ = Γ`/k is the only parameter in the problem, and that the
coupled dynamics takes the form

2θ′1 + cos(θ1 − θ2)θ
′
2 + 2θ1 − θ2 − Σ sin(θ1 − θ2) = 0,

θ′2 + cos(θ1 − θ2)θ
′
1 − θ1 + θ2 = 0, (2)

where ′ denotes differentiation with respect to the rescaled time. Find the the filament
dynamics in the special case θ1 = θ2 = θ and give a physical explanation for its form.
Perform a linear stability analysis of the full dynamics around the straight configuration
θ1 = θ2 = 0 and show that the system has a Hopf bifurcation beyond a critical value of
Σ that you should find. Sketch the trajectory in the complex plane of the growth rate of
the unstable modes as a function of Σ. Explain the existence of the oscillatory unstable
modes in terms of the variational structure of the dynamics.
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