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1 (a) Consider a steady, spherically symmetric accretion of gas onto a supermassive
black hole with mass, M . You may assume that the gas is isothermal and at rest at infinity.
From mass conservation and momentum equations show that there is a sonic transition
in the flow of interest. Hence, derive the expression for the mass accretion rate, Ṁ , as a
function of M , gas density and sound speed at infinity.

(b) Comment on which astrophysical situations and for which type of galaxy this
mode of accretion flow could apply and why. List and discuss at least five reasons that
could invalidate the assumptions inherent to this accretion flow.

(c) When considering ‘Bondi-like’ accretion flows on a supermassive black hole in
the presence of a galactic potential the following simple model may be adopted,

Ṁ =
πG2M2

enc ρ∞

(c2s,∞ + σ2)
3
2

, (1)

where Ṁ is the mass accretion rate, Menc is the enclosed mass, ρ∞ is the gas density at
infinity, cs,∞ is the gas sound speed at infinity and σ is the velocity dispersion. Derive the
limiting cases of this equation in the regimes where: i) cs,∞ � σ and Menc → M , where
M is the mass of the black hole; ii) σ � cs,∞, and discuss their physical meaning.

(d)

Figure 1: Simple sketch of a supersonic motion of a black hole through a uniform density
gas cloud where two fluid streamlines with impact parameter b are illustrated.

[QUESTION CONTINUES ON THE NEXT PAGE]
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Consider a black hole, with mass M , moving supersonically with a velocity v∞
through a gas cloud with a uniform density ρ∞. You may assume that the fluid streamlines
follow essentially ballistic trajectories in the gravitational field of the black hole as
illustrated in Figure 1. The equations of motion of this problem are:

r̈ − rθ̇2 = −GM
r2

, r2θ̇ = bv∞ , (2)

where r and θ are cylindrical polar coordinates, G is the gravitational constant and
b is the impact parameter. By appropriately manipulating equation (2) show that the
solution can be written as follows

r−1 = c1 cos θ + c2 sin θ +
GM

(bv∞)2
, (3)

where c1 and c2 are two constants that you should calculate using the boundary conditions
of the problem.

Hence, determine the distance from the black hole where the two streamlines each
with the impact parameter b, as in Figure 1, collide and lead to cancellation of the
azimuthal velocity.

From this derive the critical impact parameter, bcrit, within which the gas will
be bound to the black hole and calculate the mass accretion rate onto the black hole.
Comment how this differs from the ‘standard’ Bondi solution.

Part III, Paper 347 [TURN OVER]



4

2 (a) Consider a steady, geometrically thin and optically thick α accretion disc around
a supermassive black hole, with a mass M . Assuming that black body radiation applies
at each annulus at distance R in the disc, write down how the black body temperature of
the disc, TBB(R), is determined by the viscous dissipation rate, Fdiss.

Recalling that Fdiss = νΣR2
(
dΩ
dR

)2
, where ν is the kinematic viscosity, Σ is the disc

surface density and Ω is the angular velocity, derive how TBB(R) depends on the mass
accretion rate, ṁ, M and R.

Furthermore, derive that the black body spectrum integrated over all radii, Sν̄ , for
an intermediate range of frequencies ν̄, scales as ν̄

1
3 , with kBTout � hν̄ � kBTin, where

kB is the Boltzmann constant and h is the Planck constant. Tin and Tout are disc black
body temperatures in the innermost region of the disc and in the outer disc, respectively.

(b) For an α accretion disc around a supermassive black hole, qualitatively explain
different regions that may exist in the disc which are dominated by radiation pressure, gas
pressure and different opacities.

For the region of the disc dominated by radiation pressure calculate the total cooling
rate and the total heating rate to determine if this region is thermally unstable or not.
Recall that for gas to be thermally unstable the following needs to be satisfied:

∂Q̇

∂Tc
< 0 , (1)

where Q̇ is the net cooling rate and Tc is the mid-plane disc temperature. Qualitatively
discuss your findings in the context of observed AGN variability.

(c) For the standard, steady α disc, vertically integrating the toroidal component
of the Navier-Stokes equation one obtains:

ΣRuR
d(R2Ω)

dR
=

d

dR

(
νΣR3 dΩ

dR

)
, (2)

where uR is the radial velocity. Show that radially integrating this equation from the
ISCO to some large R one can estimate uR to be:

uR ≈ α
H2

R2

uφl

l − lISCO
, (3)

where H is the vertical height of the disc, uφ is the azimuthal velocity and l is the specific
angular momentum.

Assuming that uR undergoes a sonic transition close to ISCO and that the disc at
the sonic transition is still geometrically thin, show that for α� 1 the no torque boundary
condition directly implies that the gas specific angular momentum is conserved as it crosses
ISCO.
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3 (a) Explain what the maximal radiative efficiency is, and how it can be simply
defined in the Newtonian limit. How does it affect the accretion rate onto a supermassive
black hole? Why and how may it depend on the spin of the black hole? What is the
difference between radiative efficiency and maximal radiative efficiency? Describe two
examples of radiatively inefficient flows.

(b) Consider an optically thin, adiabatic Bondi accretion flow onto a supermassive
black hole of mass M and luminosity L. Assuming that the gas density and sound speed
at infinity are ρ∞ and cs,∞, respectively, derive that the radiative efficiency is a function
of L and Eddington luminosity only, with a constant prefactor of 9 × 10−3. Provide a
physical interpretation of this result.

(c) Explain qualitatively what is meant by Soltan’s argument and how from
observations we can constrain the average radiative efficiency of a cosmological population
of AGN. Based on these considerations, discuss which types of accretion flows are most
likely to fuel AGN and why.

(d) Consider now a steady, geometrically thick accretion disc, with disc height H
comparable to the disc radius R. Write down the expression for the mass accretion rate
through this disc, Ṁ .

If the disc density is low enough the electron-proton thermal equilibration timescale,
te−p, will be longer than the gas inflow timescale. The electron-proton thermal equilibra-
tion timescale applicable to this problem can be approximated as

te−p ≈ 0.06
1

nσTc

mp

me

(
kBTe
mec2

) 3
2

, (1)

where n is the gas number density, σT is the Thompson cross-section, c is the speed of
light, mp is the proton mass, me is the electron mass, kB is the Boltzmann constant and
Te is the electron temperature.

In this case show that
Ṁ

ṀEdd

. 0.4α2 , (2)

where ṀEdd is the Eddington accretion rate and α is the Shakura-Sunayev parameter.
You may assume that the electrons are mildly relativistic.

Qualitatively explain how the radiative efficiency of this flow compares to the
canonical value of 0.1 adopted for thin α accretion discs.

[Hint: To derive this results you may use analogous arguments to the ones used to
estimate the characteristic timescales of a thin α disc.]

END OF PAPER
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