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1 A system has a conserved scalar order parameter φ representing a composition field.
Its free energy functional is F [φ] =

∫
F dr with F = f(φ) + κ

2 (∇φ)2, where f = a
2φ

2 + b
4φ

4

with a < 0 and b, κ > 0.

(a) By considering the change in F caused a small deformation r→ r+u, and comparing
this to

∫
Σijεij dr, where Σij is the stress tensor and and εij = ∇iuj is the strain tensor,

derive the result that
∇iΣij = −φ∇jµ (1)

where the chemical potential is defined via µ(r) = δF/δφ(r).

Note: For full credit, do not assume the deformation is incompressible. For partial credit,
you may assume this.

(b) Verify that (1) is obeyed by the following expression for the stress tensor (which you
are not asked to prove)

Σij = −Π δij − κ(∇iφ)(∇jφ) (2)

where Π = µφ− F.

(c) Explain why µ(r) is independent of r for a system in equilibrium. Explain further
why it vanishes in the case of a phase separation between bulk phases with densities ±φB
where φB =

√
−a/b. Hence find a nonlinear ODE for the interfacial profile φ(x), where x

is a coordinate normal to the interface between two such phases.

(d) Writing φ(x) = φBg(u) with u = x/ξ0 and ξ20 = −2κ/a, derive that the solution of
the required ODE is φ(x) = ±φB tanh[(x − x0)/ξ0] ≡ ±φE(x, x0) where x0 is a constant
of integration that sets the interfacial position.

Note: For partial credit, prove the result by substitution instead.

(e) Without evaluating explicitly the interfacial tension σ, briefly explain why this can be
found from the equilibrium profile φ(r) = φE(x) via σA = F [φE ]− V f(φB) where A and
V are the interfacial area and system volume respectively.

(f) Assume without proof the following alternative expression for the interfacial tension:

σ =

∫ ∞

−∞
[Σyy − Σxx] dx (3)

where y is any coordinate perpendicular to the interface normal x. Using (2) and the fact

that
∫∞
−∞

du
cosh4(u)

= 4/3, show that σ =
√
−8a3κ
9b2

.
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2 (a) Briefly explain the distinction between polar and nematic liquid crystals, and
the order parameters used to describe them.

(b) A certain system of volume V with a vector order parameter p = (px, py, pz) in three
dimensions has the free energy functional F [p] =

∫
F dr where

F =
a

2
|p|2 +

b

4
|p|4 +

κ

2
(∇ipj)(∇ipj) +

γ

2
|∇2p|2

where p = |p|. Treating this system at Gaussian level (b = 0) and writing the free energy
in Fourier space as

F =
1

2

∑

q

G(q)|p(q)|2 ,

find G(q). For the case with κ < 0 and γ > 0, find the critical value of a = ac(κ, γ)
for which the fluctuations in p first become unbounded on decreasing a, and the critical
wavenumber q0 for which this happens.

(c) Suppose that the system for a < ac forms a ‘polar smectic’ phase in which the order
parameter p(x) ≡ p(x)p̂(x) varies along one spatial coordinate only (chosen as the x
direction without loss of generality). Two candidate structures are (i) p̂ is fixed, while
p = p0 cos q0x, and (ii) p = p0 is fixed, while p̂ = (0, cos q0x, sin q0x) rotates in the plane
perpendicular to x.

Show that at mean field level (i.e., ignoring fluctuations about the candidate structure)
the free energy of case (i) obeys

F

V
=
â

4
p20 +

3b

32
p40

where â = a− ac, and minimize over p0 to find F (a, b, κ, γ) for this structure. Show that
the transition from zero to finite p0 is continuous at the mean-field level considered here.

[Note: You may use without proof the fact that 1
2π

∫ 2π
0 (cosu)4 du = 3/8.]

(d) Perform the same procedure for candidate (ii) and show that for a < ac the resulting
free energy is always 50% more negative than case (i).

(e) By using symmetry arguments (and avoiding further explicit evaluations of F ) show
that the same free energy as case (ii) is recovered even when the plane of rotation of p̂
is not perpendicular to x, i.e. p̂ = R(0, cos q0x, sin q0x) where R is any constant rotation
matrix (that is, any fixed element of SO(3)).

(f) How would this degeneracy be affected by adding a small term λ|∇.p|2 to F? Give a
brief but reasoned answer that considers both signs of λ.
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3 Consider a phase-separating symmetric binary fluid mixture with conserved order
parameter φ obeying Model B dynamics without noise in three dimensions:

φ̇ = −∇.J ; J = −M∇
(
δF

δφ

)
.

Here M is a constant mobility; F [φ] =
∫
F dr with F = f(φ) + κ

2 (∇φ)2 and f = a
2φ

2 + b
4φ

4

where a < 0 and b, κ > 0. A large spherically symmetric droplet of radius R and
composition φ = +φB + O(1/R) is immersed in a region whose composition far from
the droplet is φ(r) = −φB + φ̃(r) where φ̃(∞) = ε > 0 is the supersaturation. Here ±φB
are the bulk coexistence densities.

(a) By considering the Laplace pressure across a curved interface, or otherwise, explain why
local equilibrium at the droplet surface requires φ(R±) = ∓φB + δ(R), with δ(R) ∝ σ/R,
where σ is the interfacial tension.

Note: You are not asked to derive the full result: δ(R) = σ/(αφBR) with α = f ′′(φB).
However this expression is needed in part (d) below.

(b) Show that, for small supersaturation and large R, the Model B equations for φ̃(r) in
the exterior region reduce in the quasistatic limit to the Laplace equation.

(c) Solving this equation, and calculating the radial current J(r = R+) at the droplet
surface, derive the following equation of motion for the droplet radius R:

Ṙ =
1

2φB

(
αM

R
(ε− δ(R))

)

Sketch the right hand side as a function of R. What is the physical significance of R∗(ε),
defined via δ(R∗) = ε?

(d) Show that the equation for Ṙ can be rewritten

Ṙ = −M(R) dF/dR (1)

where M = M/(16πφ2BR
3) and F (R) = 4πR2σ − 4

3πR
3∆ with ∆ = 2φBαε.

Viewing R as a coarse-grained coordinate with mobilityM(R), interpret the result for the
free energy of the droplet F (R). Confirm that F has a maximum at R∗ and calculate its
value, F ∗.

(e) Explain why, when thermal fluctuations are allowed for, Equation (1) should be
replaced by a Langevin equation. ApproximatingM with a constant valueM≡M(R∗),
and assuming the Langevin equation then to take the form

Ṙ = −M dF/dR+AΛ , (2)

with Λ unit white noise, state how (and, briefly, why) the noise amplitude A depends on
temperature T and mobility M.

(f) Consider a metastable system at supersaturation ε and temperature T , whose volume is
such that of order one subcritical (R 6 R∗) droplet is typically present. Without detailed
calculation, give a reasoned estimate of how the time taken for a macroscopic droplet to
appear depends on F ∗.
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