MAMA/342, NST3AS/342, MAAS/342, NST3PHY/TQM, MAPY/TQM

MAT3 MATHEMATICAL TRIPOS Part III

Monday, 12 June, 2023 $\,$ 9:00 am to 11:00 am $\,$

PAPER 342

TOPOLOGICAL QUANTUM MATTER

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Consider a two-dimensional electron system described by the Chern-Simons (CS) Lagrangian density

$$\mathcal{L} = \frac{1}{4\pi\hbar} K_{IJ} \varepsilon^{\alpha\beta\gamma} a_{I\alpha} \partial_{\beta} a_{J\gamma},$$

where K_{IJ} is an $n \times n$ symmetric invertible matrix of integers and $a_{I\alpha}$ are CS gauge fields. Suppose that electrons (i.e., the system's microscopic constituents) have particle 3-current

$$J^{\alpha} = \frac{1}{2\pi\hbar} t_I \epsilon^{\alpha\beta\gamma} \partial_{\beta} a_{I\gamma},$$

where **t** is an *n*-component vector with $t_I = 1$ for all *I*; the number *N* of electrons in an area Ω is thus $N = \int_{\Omega} d^2x J^0$. (In both \mathcal{L} and J^{α} we sum over repeated indices.)

(a) Add source terms to \mathcal{L} and use the classical equations of motion (EOMs) for $a_{I\alpha}$ to show that encircling a quasiparticle of charges q_I (under $a_{I\alpha}$) with one of charges q'_I yields phase $\exp(2i\theta_{q'q})$ with $\theta_{q'q} = \pi \mathbf{q}' \cdot K^{-1}\mathbf{q}$, where $(\mathbf{q}^{(\prime)})_J = q_J^{(\prime)}$ for the *n*component vector $\mathbf{q}^{(\prime)}$. Using the EOMs, also obtain the number N of electrons in a quasiparticle of charges \mathbf{q} . Using these results, show that for $K = \mathbb{1}_n$ quasiparticles with $\mathbf{q} = \mathbf{e}_J$, where $(\mathbf{e}_J)_I = \delta_{IJ}$, can be interpreted as electrons. [In obtaining $\theta_{q'q}$, you may use the shortcut of substituting the EOMs back to \mathcal{L} .]

The rest of the question focuses on $K = \mathbb{1}_n + pM$ with p integer and $M_{IJ} = 1$ for all $I, J = 1, \ldots, n$.

- (b) Show that, compared with part (a), an additional CS flux $-2\pi\hbar p/(1+np)$ in all the n gauge fields is attached to quasiparticles with $\mathbf{q} = \mathbf{e}_J$. [In obtaining K^{-1} , you may want to use that $M^2 = nM$.]
- (c) Show that quasiparticles with $\mathbf{q} = \mathbf{e}_J$ have constituent particle number $N = (1 + np)^{-1}$. Obtain the allowed set of charges \mathbf{q} an electron can have by requiring that (i) an electron encircling a quasiparticle with any \mathbf{q}' yield phase $\exp(2i\theta_{q'q}) = 1$, (ii) be a fermion, and (iii) have unit constituent particle number N. Hence show that p must be even. [You may use that $q_I^{(\prime)}$ are integers.]
- (d) Suppose that the process $T_{\gamma}(\mathbf{q})$ of creating a quasiparticle of charge \mathbf{q} together with its antiparticle, dragging the quasiparticle along a path γ , and then reannihilating with its antiparticle is a unitary operation taking ground state to ground state. Working on the torus, use $T_{\gamma}(\mathbf{q})$, with suitable \mathbf{q} and pairs of paths γ , to show that $\theta_{q'q} = \pi \mathbf{q}' \cdot K^{-1} \mathbf{q}$ implies ground state degeneracy of (at least) $|\det K|$ and that this equals |1 + np|.

2 This question considers phase-flip and bit-flip codes, the relation of their concatenation to the surface code, and the corresponding error-correction thresholds.

(a) Consider the unperturbed one-dimensional Ising model

$$H = -J \sum_{j=1}^{n-1} X_j X_{j+1}, \quad J > 0.$$

By establishing stabilizer generators and logical operators, show that the ground space is the code space of an *n*-qubit code to detect phase-flip errors Z_j . Denoting this "phase-flip" code by C_n^Z , use the Knill-Laflamme conditions to establish the maximum number t of phase-flip errors that C_n^Z can correct, assuming that at most t phase flips may occur on any combination of qubits. Explain why C_n^Z cannot correct bit-flip errors X_j .

- (b) Suppose that the probability of a phase-flip error on a qubit is p (with $0 \le p < 1/2$), independently for each qubit. Show that maximum likelihood decoding of C_n^Z amounts to a majority vote. Obtain the corresponding error-correction threshold using the properties of the binomial distribution B(n, p), including its mean np and standard deviation $\sqrt{np(1-p)}$.
- (c) The *n*-qubit bit-flip code C_n^X is obtained from C_n^Z upon $X_j \leftrightarrow Z_j$ in all operators. Consider the concatenation $C_n^Z \circ C_m^X$ of C_n^Z with C_m^X , obtained by replacing the constituent qubits of C_n^Z by the logical qubits of C_m^X . Show that $C_n^Z \circ C_m^X$ can be viewed as a surface code on a lattice defined using *n* spheres joined south-pole-to-north-pole, such that the spheres' touching points define the vertices and, for each sphere, *m* north-pole-to-south-pole lines of longitudes define the links. Write down the logical operators, interpret them geometrically, and obtain the code distance.
- (d) Consider $C_n^Z \circ C_m^X$ under the error model in part (b). Show that the error-correction threshold is the same as in part (b), however, the larger *m* the slower the logical error probability decays with *n*. [You may want to use that $((1 p) \pm p)^l = \Pr(\text{even}) \pm \Pr(\text{odd})$ for the probabilities $\Pr(\text{even})$ of an even and $\Pr(\text{odd})$ of an odd number of successes from the binomial distribution B(l, p).]

- **3** This question studies aspects of Majorana zero modes.
 - (a) The Bogoliubov-de Gennes Hamiltonian for a one-dimensional superconductor reads

$$H_{\rm BdG} = \begin{pmatrix} \frac{p^2}{2m} - \mu & \Delta p\\ \Delta p & \mu - \frac{p^2}{2m} \end{pmatrix}, \quad \Delta, m > 0,$$

with $p = -i\hbar\partial_x$. Argue that a system with a superconductor for x < 0 and the vacuum for x > 0 satisfies $\operatorname{sgn}(\mu) = -\operatorname{sgn}(x)$. Use a long-wavelength approximation, describing also its domain of validity, to show that such a system hosts a zeroenergy bound state ψ at the superconductor-vacuum interface. Express the characteristic spatial width of ψ using the parameters of H_{BdG} . Express the operator γ corresponding to ψ using fermion creation and annihilation operators and show that γ can be chosen Hermitian.

- (b) Define Majorana zero modes (MZMs). Define adiabaticity in the context of MZM exchange and show, on general grounds, that adiabatically exchanging MZMs γ_a and γ_b implements $R_{ab}^{\pm} = \exp\left(\pm \frac{\pi}{4}\gamma_a\gamma_b\right)$ up to a phase. Interpret the sign \pm in R_{ab}^{\pm} .
- (c) Consider a system of N+1 MZMs γ_j (j = 0, ..., N). Show that $\Pi_{\pm}^{(ab)} = \frac{1}{2}(\mathbb{1}\pm i\gamma_a\gamma_b)$ is a projector and that it describes a fermion-parity measurement. Suppose that the system is prepared in the +1 eigenstate of $i\gamma_N\gamma_0$. Show that, for this state, the sequence $\Pi_{\pm}^{(N0)}\Pi_{s_a}^{(a0)}\Pi_{s_b}^{(b0)}$ of measurements, with $\Pi_{s_j}^{(j0)} = (\mathbb{1} + is_j\gamma_j\gamma_0)/2$ and outcome $s_j = \pm 1$, implements $R_{ab}^{s_as_b}$ for 0 < a, b < N.
- (d) To achieve the desired braid, the measurements of $i\gamma_j\gamma_0$ in part (c) must yield specified outcomes s_j . Focusing on $\Pi_{s_b}^{(b0)}$, show that each of $s_b = \pm 1$ occurs with 1/2 probability. Then show that a desired s_b can be achieved via "forced measurements" and briefly describe how the approach can be continued for the entire $\Pi_+^{(N0)}\Pi_{s_a}^{(a0)}\Pi_{s_b}^{(b0)}$ sequence.

END OF PAPER