PAPER 341

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.
Attempt THREE questions from Section A and ONE question from Section B. Each question from Section B carries twice the weight of a question from Section A.

STATIONERY REQUIREMENTS
Cover sheet
Treasury tag
Script paper
Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION A

1
Consider the ODE

$$
\mathbf{y}^{\prime}=A(\mathbf{y}) \mathbf{y}, \quad t \geqslant 0, \quad \mathbf{y}(0)=\mathbf{y}_{0} \in \mathbb{R}^{d}
$$

where A is a $d \times d$ real-valued matrix function such that $A(\mathbf{x})+A^{\top}(\mathbf{x})=O$ for every $\mathbf{x} \in \mathbb{R}^{d}$.
a. Prove that $\|\mathbf{y}(t)\|=\left\|\mathbf{y}_{0}\right\|$ for all $t \geqslant 0$, where $\|\cdot\|$ is the standard Euclidean norm, $\|\mathbf{x}\|=\sqrt{\mathbf{x}^{\top} \mathbf{x}}$.
b. The ODE is solved with the implicit midpoint rule, which for $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$ reads

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(\frac{\mathbf{y}_{n}+\mathbf{y}_{n+1}}{2}\right)
$$

Prove that $\left\|\mathbf{y}_{n}\right\|=\left\|\mathbf{y}_{0}\right\|$ for all $n \in \mathbb{Z}_{+}$.
c. Instead of the implicit midpoint rule, we solve the ODE with the trapezoidal rule,

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{h}{2}\left[\mathbf{f}\left(\mathbf{y}_{n}\right)+\mathbf{f}\left(\mathbf{y}_{n+1}\right)\right]
$$

Prove that

$$
\left\|\mathbf{y}_{n+1}\right\|^{2}-\left\|\mathbf{y}_{n}\right\|^{2}=\frac{h}{2} \mathbf{y}_{n}^{\top}\left(A_{n+1}-A_{n}\right) \mathbf{y}_{n+1}
$$

2
The ODE $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$ is solved by the two-step method
$\mathbf{y}_{n+2}-(1+a) \mathbf{y}_{n+1}+a \mathbf{y}_{n}=\frac{h}{12}\left[(5+a) \mathbf{f}\left(\mathbf{y}_{n+2}\right)+8(1-a) \mathbf{f}\left(\mathbf{y}_{n+1}\right)-(1+5 a) \mathbf{f}\left(\mathbf{y}_{n}\right)\right]$,
where a is a real parameter.
a. What is the order of the method?
b. For which values of a is the method convergent?
c. For which values of a is the method A-stable?

You should quote carefully all results from the lecture course you are using in your answer.

3

The Poisson equation

$$
\Delta u=f, \quad u=u\left(x_{1}, x_{2}, x_{3}\right),
$$

is given in the three-dimensional cube $0 \leqslant x_{1}, x_{2}, x_{3} \leqslant 1$ with zero Dirichlet boundary conditions. It is solved by the finite-difference method

$$
u_{k-1, \ell, m}+u_{k+1, \ell, m}+u_{k, \ell-1, m}+u_{k, \ell+1, m}+u_{k, \ell, m-1}+u_{k, \ell, m+1}-6 u_{k, \ell, m}=(\Delta x)^{2} f_{k, \ell, m}
$$

for $k, \ell, m=1, \ldots, n$, where $\Delta x=1 /(n+1), u_{k, \ell, m} \approx u(k \Delta x, \ell \Delta x, m \Delta x)$ and $f_{k, \ell, m} \approx$ $f(k \Delta x, \ell \Delta x, m \Delta x)$.
a. Find the order of the approximation, i.e. integer $p \geqslant 1$ such that

$$
u_{k, \ell, m}=u(k \Delta x, \ell \Delta x, m \Delta x)+O\left((\Delta x)^{p+1}\right), \quad k, \ell, m=1, \ldots, n
$$

for $n \gg 1$ and all suitably smooth f.
b The n^{3} linear algebraic equations are written as $A \mathbf{u}=\mathbf{b}$, where $\mathbf{u} \in \mathbb{R}^{n^{3}}$ corresponds to an arbitrary ordering of the $u_{k, \ell, m} \mathrm{~s}$. Prove that A is a symmetric matrix.
c. Prove that A is negative definite, consequently that the system is nonsingular.

4
Consider the time-dependent PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\alpha \frac{\partial u}{\partial x}, \quad t \geqslant 0, \quad x \in[-1,1],
$$

where $u=u(x, t)$, while α is a real constant, given with an initial condition $u(x, 0)=u_{0}(x)$ and zero boundary conditions.
a. Determine conditions on α so that the solution is well posed in the L_{2} norm.
b. The PDE is solved by the semi-discretisation

$$
u_{m}^{\prime}=\frac{1}{(\Delta x)^{2}}\left(u_{m-1}-2 u_{m}+u_{m+1}\right)+\frac{\alpha}{2 \Delta x}\left(u_{m+1}-u_{m-1}\right), \quad m=-N, \ldots, N,
$$

where $\Delta x=1 /(N+1)$ and $u_{m}(t) \approx u(m \Delta x, t)$. Is the method convergent?

5
a. Define what is meant by a time-symmetric method for ODEs and prove that it is always of an even order.
b. Determine which of the following methods are time symmetric:

1. The method $\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}\left(\mathbf{y}_{n}\right)+\frac{1}{2} h^{2} \mathbf{g}\left(\mathbf{y}_{n}\right)$, where $\mathbf{y}^{\prime}=\mathbf{f}(y)$ and $\mathbf{y}^{\prime \prime}=\mathbf{g}(\mathbf{y})$ (therefore $\mathbf{g}(\mathbf{y})=[\partial \mathbf{f}(\mathbf{y}) / \partial \mathbf{y}] \mathbf{f}(\mathbf{y})$);
2. The trapezoidal rule $\mathbf{y}_{n+1}=\mathbf{y}_{n}+\frac{1}{2} h\left[\mathbf{f}\left(\mathbf{y}_{n}\right)+\mathbf{f}\left(\mathbf{y}_{n+1}\right)\right]$;
3. The Runge-Kutta method with the Butcher tableau

SECTION B

6
Write an essay on multistep methods for ODEs, inclusive of their order, convergence and stability. Quote carefully all the theorems you are using and accompany your exposition with examples.

7

Write an essay on the Ritz method in finite element theory. Present complete proofs as appropriate and accompany your exposition with the example of the two-point boundary value problem $-\left(p y^{\prime}\right)^{\prime}+q y=f, x \in[-1,1]$, with zero boundary conditions, given appropriate functions p, q, f.

END OF PAPER

