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SECTION A

1

Consider the ODE

y′ = A(y)y, t > 0, y(0) = y0 ∈ Rd,

where A is a d × d real-valued matrix function such that A(x) + A>(x) = O for every
x ∈ Rd.

a. Prove that ‖y(t)‖ = ‖y0‖ for all t > 0, where ‖ · ‖ is the standard Euclidean norm,
‖x‖ =

√
x>x.

b. The ODE is solved with the implicit midpoint rule, which for y′ = f(y) reads

yn+1 = yn + hf

(
yn + yn+1

2

)
.

Prove that ‖yn‖ = ‖y0‖ for all n ∈ Z+.

c. Instead of the implicit midpoint rule, we solve the ODE with the trapezoidal rule,

yn+1 = yn +
h

2
[f(yn) + f(yn+1)].

Prove that

‖yn+1‖2 − ‖yn‖2 =
h

2
y>
n (An+1 −An)yn+1.

2

The ODE y′ = f(y) is solved by the two-step method

yn+2 − (1 + a)yn+1 + ayn =
h

12
[(5 + a)f(yn+2) + 8(1− a)f(yn+1)− (1 + 5a)f(yn)],

where a is a real parameter.

a. What is the order of the method?

b. For which values of a is the method convergent?

c. For which values of a is the method A-stable?

You should quote carefully all results from the lecture course you are using in your answer.
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3

The Poisson equation

∆u = f, u = u(x1, x2, x3),

is given in the three-dimensional cube 0 6 x1, x2, x3 6 1 with zero Dirichlet boundary
conditions. It is solved by the finite-difference method

uk−1,`,m + uk+1,`,m + uk,`−1,m + uk,`+1,m + uk,`,m−1 + uk,`,m+1 − 6uk,`,m = (∆x)2fk,`,m

for k, `,m = 1, . . . , n, where ∆x = 1/(n + 1), uk,`,m ≈ u(k∆x, `∆x,m∆x) and fk,`,m ≈
f(k∆x, `∆x,m∆x).

a. Find the order of the approximation, i.e. integer p > 1 such that

uk,`,m = u(k∆x, `∆x,m∆x) + O((∆x)p+1), k, `,m = 1, . . . , n

for n� 1 and all suitably smooth f .

b The n3 linear algebraic equations are written as Au = b, where u ∈ Rn3
corresponds

to an arbitrary ordering of the uk,`,ms. Prove that A is a symmetric matrix.

c. Prove that A is negative definite, consequently that the system is nonsingular.

4

Consider the time-dependent PDE

∂u

∂t
=
∂2u

∂x2
+ α

∂u

∂x
, t > 0, x ∈ [−1, 1],

where u = u(x, t), while α is a real constant, given with an initial condition u(x, 0) = u0(x)
and zero boundary conditions.

a. Determine conditions on α so that the solution is well posed in the L2 norm.

b. The PDE is solved by the semi-discretisation

u′m =
1

(∆x)2
(um−1 − 2um + um+1) +

α

2∆x
(um+1 − um−1), m = −N, . . . , N,

where ∆x = 1/(N + 1) and um(t) ≈ u(m∆x, t). Is the method convergent?
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a. Define what is meant by a time-symmetric method for ODEs and prove that it is
always of an even order.

b. Determine which of the following methods are time symmetric:

1. The method yn+1 = yn +hf(yn) + 1
2h

2g(yn), where y′ = f(y) and y′′ = g(y)
(therefore g(y) = [∂f(y)/∂y]f(y));

2. The trapezoidal rule yn+1 = yn + 1
2h[f(yn) + f(yn+1)];

3. The Runge–Kutta method with the Butcher tableau

1
2

1
2

1
.
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SECTION B

6

Write an essay on multistep methods for ODEs, inclusive of their order, convergence
and stability. Quote carefully all the theorems you are using and accompany your
exposition with examples.

7

Write an essay on the Ritz method in finite element theory. Present complete
proofs as appropriate and accompany your exposition with the example of the two-point
boundary value problem −(py′)′ + qy = f , x ∈ [−1, 1], with zero boundary conditions,
given appropriate functions p, q, f .

END OF PAPER
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