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1 Let a1, . . . , am ∈ Rn, b ∈ Rm, and consider the function f : Rn → R defined by

f(x) = max
i=1,...,m

(〈ai, x〉+ bi).

(a) Show that f is convex. State the definition of subgradient. For x ∈ Rn give a
subgradient of f at x and justify your answer.[5]

(b) Is the function f Lipschitz (with respect to the Euclidean norm)? Justify your
answer, and if yes, give an upper bound on the Lipschitz constant. Write down the
subgradient method for minimizing f . State, without proof, an upper bound of the form
O(ε−p) (where p > 0) on the number of iterations needed to find a point x such that
f(x)−min f 6 ε.[10]

For β > 0, let

fβ(x) = β−1 log

m∑

i=1

exp(β(〈ai, x〉+ bi)).

(c) Show that fβ is convex, and that for all x,

f(x) 6 fβ(x) 6 f(x) + β−1 logm.

[15]

(d) Give an expression for the gradient of fβ. Show that fβ is L-smooth with respect
to the Euclidean norm for some constant L > 0 that you should specify.[10]

(e) Explain how, using Nesterov’s accelerated gradient, one can compute x such
that f(x)−min f 6 ε in at most O(ε−1) iterations.[10]
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2 A nonlinear map F : RN → RN is monotone with respect to an inner product 〈·, ·〉
if 〈F (v)− F (w), v − w〉 > 0 for all v, w ∈ RN .

(a) Show that if f : RN → R is convex and differentiable, then F (w) = ∇f(w) is a
monotone map.[5]

(b) Let M : RN → RN be a linear map which is self-adjoint with respect to 〈·, ·〉
and positive definite. Define the (nonlinear) map T : Rn → Rn for each w ∈ RN via the
implicit equation

M(T (w)) + F (T (w)) = M(w) (1)

which we assume admits a unique solution T (w) for all w ∈ RN , where F : RN → RN is a
generic monotone map with respect to 〈·, ·〉. In short, we write T (w) = (M+F )−1(M(w)).
Verify that the fixed points of T are zeros of F , i.e., T (w) = w =⇒ F (w) = 0. After
recalling the definition of a firmly nonexpansive map, show that the map T is firmly
nonexpansive with respect to the inner product 〈·, ·〉M defined by 〈v, w〉M = 〈v,M(w)〉 =
〈M(v), w〉.[10]

Let f : Rn → R be a convex differentiable function, and consider the problem

min
x∈Rn

f(x) subject to Ax = b (2)

where A ∈ Rm×n and b ∈ Rm.

(c) Write down the Lagrangian and the dual optimization problem. Show that (x, z)

is a pair of primal-dual optimal points if, and only if, F

(
x
z

)
= 0, where F : Rn+m → Rn+m

is the nonlinear map defined by

F

(
x
z

)
=

(
∇f(x)−AT z

Ax− b

)
.

Show that the map F is monotone with respect to the Euclidean inner product.[10]

(d) Consider a symmetric matrix M of size n+m of the form

M =

[
αI AT

A βI

]
. (3)

where α, β are scalars, and I represents an identity matrix of suitable size. Show that if
αβ > ‖A‖22, then M is positive definite. [Here ‖A‖2 is the operator norm of A.][10]

(e) Let T : Rn+m → Rn+m be the nonlinear map defined as in (1), i.e., T (w) =
(M + F )−1(M(w)), with the linear map M : Rn+m → Rn+m given in (3). Consider the
fixed point iterations for T , namely

wk+1 = T (wk).

By writing wk =

(
xk
zk

)
∈ Rn+m, simplify these iterations, and show that they can be

expressed solely in terms of the proximal operator of α−1f and the linear map A.[15]

Part III, Paper 339 [TURN OVER]



4

END OF PAPER

Part III, Paper 339


