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1 Consider the O(N) nonlinear sigma model in two space dimensions. The imaginary-
time partition function can be written as

Z =

∫
DnDλe−S[n,λ] ,

where n is an N -component vector and λ a Lagrange multiplier, such that

S[n, λ] =
1

2vg

∫
d2x

∫ 1/T

0
dτ
[
(∂τn)2 + v2(∇n)2 + iλ(n2 −N)

]
.

Here T is the temperature, v a velocity and g a coupling.

(a) Perform the integral over n and thereby write the partition function as

Z =

∫
Dλe−S̃[λ] , (1)

for some S̃[λ] that you should express as a functional trace.

(b) Explain why at large N one can evaluate the partition function (1) using a
saddle-point approximation. Write down the saddle point equation as a sum over
Matsubara frequencies and integral over momenta, assuming the saddle-point value
iλ = m2 is independent of space and time.

(c) Write down the zero temperature limit of the saddle point equation as an integral.
If necessary you may regulate any high energy or momentum divergences you find
with a cutoff Λ, but take Λ → ∞ where possible. Explain why a solution to the
saddle point equation only exists for g > gc, where gc is a critical value of the
coupling. Show that in this case m is given by

m =
4πv(g − gc)

ggc
. (2)

Without solving any equations, state physically what will happen when g < gc.

(d) Now consider T > 0, still with g > gc. The solution to the saddle point equation
will now depend on temperature, so we write m(T ). Denote the T = 0 solution (2)
by m = ∆, the zero temperature gap. The critical coupling gc remains defined at
T = 0. Recall that for reasonable functions F (z):

T
∑

n

F (iωn) =
−i
4π

∫

C
dz coth

z

2T
F (z) , (3)

where the contour C has two parts, one running down just to the left of the imaginary
axis and one running up just to the right of the imaginary axis. Use the formula (3)
to evaluate the sum over Matsubara frequencies in the T > 0 saddle point equation.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) Now perform the integral over momenta in the saddle point equation, using the
expression you have just derived for the sum over Matsubara frequencies. Regularize
your result with a cutoff Λ on the momenta. Remove the divergence by subtracting
off the zero temperature saddle point equation at g = gc, regularized in the same
way, and then taking Λ→∞. In this way, obtain the result

m(T ) = 2T sinh−1
[
1
2e

∆
2T

]
. (4)

[You may use without proof the integral

∫ ∞

−∞

dω

2π

1

v2k2 + ω2
=

1

2kv
. ]

(f) Obtain from (4) the leading temperature dependence of m(T ) at temperatures
T � ∆ and T � ∆, and give a physical interpretation of your results.

(g) The Matsubara frequency Green’s function of each component of the n field is

G(iωn, k) =
vg

N

1

v2k2 + ω2
n +m(T )2

.

Write down the corresponding retarded Green’s function GR(ω, k). Write down the
spectral weight ImGR(ω, k). Explain how the retarded Green’s function, using (4)
to give m(T ), is consistent with quantum critical scaling.
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2 The coherent state path integral of a spin-S antiferromagnetic Heisenberg model
in two space dimensions, in a uniform background magnetic field B, is given by

Z =

∫
Dniδ(|ni|2 − 1)eiI[{ni}] ,

where the action

I[{ni}] = S
∑

i

Γ[ni]−
∫
dt


S2J

∑

<ij>

ni · nj + S
∑

i

B · ni


 . (?)

Here the coupling J > 0, and the Wess-Zumino term Γ[ni] is the oriented area of a region
of the two-sphere target space of the ni that is bounded by the curve ni(t).

(a) Express ni in terms of a slowly varying Néel order parameter ñ(xi) plus a slowly
varying fluctuation m(xi). The order parameter obeys |ñ|2 = 1. The fluctuation is
orthogonal to the order parameter, m · ñ = 0, and is small, |m| � |ñ|.

(b) Argue that, in the continuum limit, the contribution to the Wess-Zumino term from
the order parameter ñ(xi) alone is negligible. You may ignore this contribution in
the rest of this question.

(c) Given that the variation of the Wess-Zumino term obeys

S

∫
dtδΓ[n] = S

∫
dt(δn) ·

(
n× dn

dt

)
,

obtain the contribution to the continuum action from the Wess-Zumino term that
is linear in m.

(d) Obtain the continuum limit of the remainder of the action, i.e. coming from the
terms in square brackets in (?). Assume that the model has been defined on a
square lattice with lattice spacing a.

(e) Using the full continuum action you have obtained, integrate out the massive field
m to obtain an effective action for the order parameter ñ.

[You may quote any results you need concerning Gaussian integrals. Before perform-
ing the integral you will need to add a Lagrange multiplier term λ(x)m(x) · ñ(x) to
the continuum Lagrangian, to impose the constraint m · ñ = 0. The effective action
you obtain will be a function of ñ and λ.]

(f) Perform the Gaussian path integral over λ to obtain an effective action Ieff[ñ].

(g) Write ñ in terms of polar coordinates (θ, φ) on the two-sphere, and consider small
fluctuations θ = π

2 − δθ and φ = δφ. Let the magnetic field point in the x direction.
Show that the effective Lagrangian takes the form

Leff = −α2
(
(∇δθ)2 + (∇δφ)2

)
+ β2

(
(∂tδθ +Bδφ)2 + (∂tδφ−Bδθ)2

)
.

Here α and β are two real coefficients that you should give. By writing this
Lagrangian in momentum/frequency space, or otherwise, obtain the dispersion
relations of the linearized modes and interpret your result.
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