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1 Consider functions fj(x1, . . . , xm) of variables xi, where j = 1, . . . , n and
i = 1, . . . ,m, and their partial derivatives

fjxi ≡
∂fj
∂xi

, j = 1, . . . , n, i = 1, . . . ,m .

You are given that the Euler-Lagange equations for the Lagrangian L
(
fjxi , fj

)
, where

j = 1, . . . , n and i = 1, . . . ,m, corresponding to the variational principle

δ

∫
Ldx = 0 ,

are
m∑

i=1

∂

∂xi

(
∂L

∂fjxi

)
− ∂L

∂fj
, j = 1, . . . , n . (1)

One dimensional waves can be described by a variational principle

δ

∫ ∫
L(φx, φt, φ)dxdt = 0 ,

where x and t are space and time variables, and φ(x, t) is the dependent variable. From
equation (1), with f1 = φ, x1 = x and x2 = t, the corresponding Euler-Lagrange equation
for φ is

∂L1

∂x
+
∂L2

∂t
− L3 = 0 ,

where

L1 =
∂L

∂φx
, L2 =

∂L

∂φt
and L3 =

∂L

∂φ
.

(a) Assume that the waves are modulated over length and times scales X = εx and T = εt.
Introduce a modulated phase function θ = ε−1Θ(X,T ) such that

φ(x, t) ≡ Φ(θ,X, T ; ε) ,

where Φ is periodic in θ with normalised period 2π. Derive the exact equation

k
∂L1

∂θ
+ ε

∂L1

∂X
− ω

∂L2

∂θ
+ ε

∂L2

∂T
− L3 = 0 , (2)

where
k(X,T ) = ΘX , ω(X,T ) = −ΘT ,

and
L ≡ L(kΦθ + εΦX ,−ωΦθ + εΦT ,Φ) .

[QUESTION CONTINUES ON THE NEXT PAGE]
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Deduce that

∂

∂θ
((kL1 − ωL2) Φθ − L) + ε

∂

∂X
(ΦθL1) + ε

∂

∂T
(ΦθL2) = 0 , (3)

and thence that
∂

∂X

∂L

∂k
− ∂

∂T

∂L

∂ω
= 0 , (4)

where

L(k, ω,Φθ,ΦX ,ΦT ,Φ; ε) =
1

2π

∫ 2π

0
L(kΦθ + εΦX ,−ωΦθ + εΦT ,Φ) dθ .

Deduce the Euler-Lagrange equations, and their relationship to (2) and (4), for the
variational principle

δ

∫ ∫ ∫
L(kΦθ + εΦX ,−ωΦθ + εΦT ,Φ) dθdXdT = 0 ,

by viewing L as a function of Φ(θ,X, T ; ε), the modulated phase function Θ(X,T ),
and their derviatives.

(b) For the Lagrangian
L = 1

2φ
2
t − 1

2c
2(X,T )φ2x ,

deduce the linear equation satisfied by φ.

Henceforth assume that 0 < ε � 1, and seek a leading-order solution of the form
φ = A(X,T ) cos θ(X,T ).

(i) Derive the leading-order approximation of equation (3). By which name is this
leading-order relation usually referred?

(ii) Expand L as

L = L
(0)

+ εL
(1)

+ . . . .

Show that L
(0) ≡ L

(0)
(k, ω,A), and thence deduce the Euler-Lagrange equation

for variations of L
(0)

with respect to A. Comment very briefly on your answer.

(iii) Deduce the conservation equation for wave action,

∂W

∂T
+

∂

∂X
(cgW ) = 0 ,

where W = ∂
∂ωL

(0)
and cg (which is to be identified) is the group velocity.
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2

(a) For 0 < ε� 1 deduce the asymptotic behaviour of the integral,

I(ε) =

∫ 1

0

dx

x(x+ ε) + ε3 exp(−x2) ,

up to and including terms of O(1).
[
Hint: The following indefinite integrals may be quoted:

∫
dx

x2(x+ 1)2
=

2x2 − 1

x(x+ 1)
+ 2 ln

(
1 +

1

x

)
,

∫
x2dx

(x+ 1)2
=
x(x+ 2)

(x+ 1)
− 2 ln (1 + x) .

]

(b) By considering the largest terms in the series and using a discrete generalisation of
Laplace’s method, find the asymptotic value of the sum

S =

∞∑

n=1

xn

(n− 1)!nn
,

for x� 1.
[
Hints: You may quote Stirling’s formula, i.e. that

m! ∼ (2πm)
1
2

(m
e

)m
for m� 1 ,

and it may be helpful to recall that for a function, f(t),

∫ b

a
f(t)dt = lim

N→∞

N∑

1

hf(tn) ,

where a and b are real, h = (b− a)/N is the interval length, and tn is any point in the
interval [a+ (n− 1)h, a+ nh].

]
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3 For 0 6 x <∞, the function y(x; ε) satisfies the differential equation

εx
d2y

dx2
+ (x + 2 ε sechx)

dy

dx
+
(
εx3 + x + 1

)
y = 0 ,

where 0 < ε� 1, together with the boundary condition that

y(0; ε) = 1 .

Find the leading-order matched asymptotic solution for y(x; ε) for 0 6 x < ∞. Clearly
delineate the three asymptotic regions that you identify, and explain why the single
boundary condition given is sufficient to specify a unique solution.
[
Hint: The governing equation in one of the regions has a first integral.

]
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