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1

The shallow water potential vorticity is q = (f + ζ)/h, where f = f0 + βy is the
Coriolis parameter, ζ = (∇ × u) · ẑ is the vertical component of the relative vorticity,
h(x, y, t) = H0 − hb(x, y) + η(x, y, t) is the fluid depth, H0 is the mean fluid depth, hb is
the bottom height, and η is the surface height measured relative to the surface height for
a fluid at rest. Show, under a set of assumptions which you should clearly state, that q
can be approximated by the shallow water quasi-geostrophic potential vorticity, Pg, where

Pg =
f0
H0

(
1 +

βy

f0
+
∇2ψ

f0
+
hb
H0
− f0ψ

gH0

)
, (1)

and ψ(x, y, t) is the quasi-geostrophic streamfunction. Provide a physical interpretation
for the terms in Pg involving ψ.

Consider a situation where the bottom height is a linear function of y, i.e. hb = αy,
where αy � H0. Derive the dispersion relation for small amplitude quasi-geostrophic
perturbations to a basic state where the fluid is at rest. Using the principle of conservation
of potential vorticity and with use of a diagram, discuss the influence of β and α on the
direction of phase propagation of the waves.

Now, consider a situation where η = 0 (the rigid lid approximation). Starting from
shallow water potential vorticity conservation, Dq/Dt = 0, and assuming that the Rossby
number is small, but without making the assumption that hb is small compared to the
mean depth, obtain an equation for the evolution of the streamfunction. If the fluid depth
is an exponential function of y, i.e. h(y) = H0 exp(γy), derive the dispersion relation for
small amplitude perturbations to a state of rest. Discuss the relative importance of β and
γ in this case and identify a criterion for the influence of β or γ to be the dominant effect.
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2 The incompressible, inviscid, hydrostatic, Boussinesq equations can be written

∂uh

∂t
+ u · ∇uh + f ẑ× uh = − 1

ρ0
∇hp, (1)

1

ρ0

∂p

∂z
= b, (2)

∂b

∂t
+ u · ∇b = 0, (3)

∇ · u = 0, (4)

where b = −gρ/ρ0 is the buoyancy, ρ is the fluid density measured relative to a reference
density ρ0, u = (u, v, w) is the velocity vector, uh = (u, v) is the horizontal velocity
vector, ∇h = (∂x, ∂y), ẑ is the unit vector in the local vertical direction, and f is the
Coriolis parameter which may be considered constant.

Consider a basic state with buoyancy b = M2x+N2z, and a velocity in thermal wind
balance. Derive the dispersion relation for small amplitude, y-independent perturbations
to the basic state in an unbounded domain where k and m are the wavenumbers in the
x and z directions, respectively. Clearly state any additional assumptions. Show that
solutions are oscillatory in time if M4 < N2f2.

For the case that M4 < N2f2, find the orientation of lines of constant phase in the
x-z plane for perturbations oscillating at the minimum possible frequency. Compare the
orientation of the minimum frequency modes with the orientation of surfaces of constant
buoyancy. Discuss the restoring force(s) and compare the minimum frequency with the
frequency of oscillations in an unstratified, rotating fluid.

For modes with a given frequency, ω, find an expression for θ, the angle of the
wavenumber vector (k,m) as measured counter-clockwise from the horizontal direction
(x̂).

Consider waves that are generated by a distant source with a frequency ω2 > f2 and
with a group velocity vector, cg, that points down and to the right, such that cg · ẑ < 0
and cg · x̂ > 0. These waves then reflect off a flat, rigid horizontal boundary. Find an
expression for θ (as defined above) for the reflected waves. Sketch phase lines of the
incident and reflected waves and surfaces of constant buoyancy. On your sketch, label the
group velocity for the incident and reflected waves.
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3

The f -plane quasi-geostrophic equations for a fluid with constant buoyancy fre-
quency N confined between two rigid boundaries at z = 0 and z = H are:

{ ∂
∂t

+ ug.∇}(ψxx + ψyy +
f2

N2
ψzz) = 0 in 0 < z < H (1)

{ ∂
∂t

+ ug.∇}ψz = 0 on z = 0 (2)

{ ∂
∂t

+ ug.∇}ψz = 0 on z = H, (3)

where ψ is the quasi-geostrophic streamfunction and the geostrophic velocity ug has
components (−ψy, ψx, 0).

Give a brief description of the physical meaning of each of equations (1), (2) and
(3).

Now consider small-amplitude disturbances to a background flow (Λz, 0, 0). Care-
fully derive linearised forms of (1), (2) and (3), describing the evolution of ψ′(x, y, z, t),
the disturbance part of the quasi-geostrophic streamfunction.

Add a term −αψ′
z, with α > 0 and constant, to the right-hand side of the linearised

form of (2), to represent the damping effect of physical processes acting near the lower
boundary.

Now seek solutions of the linearised equations, with the α term included, of the
form ψ′(x, y, z, t) = Re(ψ̂(z, t)eikx). You may assume that ψ′

xx +ψ′
yy + (f2/N2)ψ′

zz is zero
in 0 < z < H.

Show that under this assumption, for given k there are constants A(k) and B(k)
such that

ψ̂(0, t) = −A(k)ψ̂z(0, t) +B(k)ψ̂z(H, t), (4)

ψ̂(H, t) = −B(k)ψ̂z(0, t) +A(k)ψ̂z(H, t), (5)

where, defining µ = NHk/f ,

A(k) = (f/Nk) cothµ and B(k) = (f/Nk)cosechµ.

[Hint: write ψ̂(y) = C cosh(kNz/f) +D cosh(kN(H − z)/f).]

Derive a pair of coupled ordinary differential equations in time for the quantities
ψ̂z(0, t) and ψ̂z(H, t).

[QUESTION CONTINUES ON THE NEXT PAGE]
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Now assume that ψ̂(z, t) = Ψ̂(z)e−ikct. Define the quantities c̃ = c/(ΛH) and
ε = α/(kΛH) and deduce the dispersion relation

c̃ = c̃±(µ, ε) = 1
2(1 − iε) ±

√
(

1

µ2
− cothµ

µ
+

1

4
) + iε(

1

2
− cothµ

µ
) − ε2

4
. (6)

Consider first the case ε = 0.

(i) Explain why (6) implies instability for µ < µc and stability for µ > µc where
an equation for µc should be given. Find approximations for c̃± for µ large and give a
physical interpretation.

Now consider ε > 0.

(ii) Show that for µ = µc there is instability.

(iii) Analyse and interpret the behaviour of c̃± for µ large. (Consider terms up to
and including O(µ−1).)
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4 (a) Consider the linearised Boussinesq primitive equations on an equatorial β-plane,
assuming that geostrophic balance holds in the y-momentum equation, written in the form

ut − βyv = −φx, (1)

βyu = −φy, (2)

σ = φz, (3)

σt +N2w = 0, (4)

ux + vy + wz = 0, (5)

where N is the constant buoyancy frequency and φ and σ represent rescaled pressure and
density perturbations.

The corresponding form of the shallow-water equations is

Ut − βyV = −Φx, (6)

βyU = −Φy, (7)

Φt + c2(Ux + Vy) = 0. (8)

Show that if U(x, y, t), V (x, y, t) and Φ(x, y, t) are solutions of (6)-(8), then
u(x, y, z, t) = χ(z)U(x, y, t), v(x, y, z, t) = V (x, y, t)χ(z), φ(x, y, z, t) = Φ(x, y, t)χ(z), are
solutions of (1)-(5) provided that χ(z) satisfies a second-order differential equation.

Give the explicit form of the equation for χ(z). Give also the corresponding
expressions for w(x, y, z, t) and σ(x, y, z, t) in terms of U , V , Φ and χ.

(b) Now consider equatorially trapped plane-wave solutions of (6)-(8), of the form
U = Re(Û(y)ei(kx−ωt)), V = Re(V̂ (y)ei(kx−ωt)) and Φ = Re(Φ̂(y)ei(kx−ωt)). Show that
there is a Kelvin wave, with V = 0, with dispersion relation ω = kc and derive the
corresponding forms of Û and Φ̂. By expressing Û(y) and Φ̂(y) in terms of V̂ (y) and then
using the information on the eigenvalue problem given below at the end of the question,
show that there is a family, labelled by n = 1, 2, 3, . . . of Rossby waves with dispersion
relation ω = −kc/(2n+ 1). Give the corresponding forms of Û , V̂ and Φ̂ for n = 1.

Draw a sketch in the k, ω plane of the dispersion relations for different wave modes
that are found from the full equatorial β-plane shallow-water equations, without an
assumption of geostrophic balance in the y-momentum equation, and comment briefly
on the differences between these dispersion relations and those found above.

(c) Use your results from (a) and (b) to deduce the properties of equatorially
trapped waves in the Boussinesq system (1)-(5) described by solutions of the form
u(x, y, z, t) = Re(û(y)ei(kx+mz−ωt)), with corresponding forms for other variables. What
are the expressions for ω in terms of k and m?

Consider a fluid occupying the region z > 0. A forcing with frequency ω = N sin θ,
with θ � 1, is applied at the boundary z = 0 in a localized region in x. Assume that
the Kelvin wave and the n = 1 Rossby wave are excited. Draw a diagram of the (x, z)
plane showing the regions where these different wave responses will appear. Within these
regions, what direction of phase propagation will be observed?

[You may assume that the eigenvalue problem ψyy − y2ψ = λψ with |ψ| → 0 as
|y| → ∞ has eigenvalues λn = −(2n+1) for n = 0, 1, . . . with corresponding eigenfunctions
ψn(y) = Hn(y) exp(−y2/2), where the Hn(.) are the Hermite polynomials, with H0(s) = 1,
H1(s) = 2s, H2(s) = 4s2 − 2, etc. ] Part III, Paper 333



7

END OF PAPER

Part III, Paper 333


