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The Rayleigh equation for examining the stability of an inviscid flow is

φ
′′ − α2φ− U

′′

U − cφ = 0

where ψ(x, z, t) = φ(z)eiα(x−ct) is the streamfunction of the disturbance, U(z) is the base
profile, ′ indicates derivative with respect to z, α is the wavenumber and c is the complex
wave speed.

(i) Assuming walls at z = 0 and z = 1, prove

(a) the inflexion point criterion for instability.

(b) Howard’s semicircle theorem.

(ii) When U(z) = 1−|z| for |z| < 1 and U(z) = 0 for |z| > 1, show that c for a symmetric
mode where φ(z) = φ(−z) satisfies

2α2c2 + α(1− 2α− e−2α)c− (1− α− (1 + α)e−2α) = 0.

Hence demonstrate that this mode is unstable for 1 6 α < αs < 2 where the threshold
αs need not be computed.

[Hint: e−4 ≈ 1
55 ]
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(a) Consider two fixed vectors v and w where |v|2 = c21, |w|2 = c22 and v · w = αc1c2
(|α| 6 1). If u(t) = ve−λ1t +we−λ2t with λ1, λ2 > 0, find the condition on α for there
to be initial energy growth for some c1 and c2 when energy is defined as |u|2. If c2 = 1,
find the optimal ratio µ := c1/c2 for maximum initial energy growth as a function of
α.

(b) You are given that the dimensionless nonlinear equations governing perturbations of
the basic state of a conducting motionless state (U = 0 and Θ = −z) in Rayleigh-
Bénard convection are

∂u

∂t
+ u · ∇u = −∇p+ σRaθẑ + σ∇2u,

∇ · u = 0,

∂θ

∂t
− w + u · ∇θ = ∇2θ

where Ra is the Rayleigh number which is a non-dimensional measure of the tem-
perature difference between the two boundaries at z = 0 and z = 1. The boundary
conditions are stress-free on the velocity field and θ = 0 at z = 0, 1 and periodicity is
assumed across the other boundaries of the domain V := {(x, y, z) ∈ [0, L]2 × [0, 1]}.

(i) Show that a composite energy E := 1
2

∫
V u2 + σRaθ2dV evolves as follows

dE

dt
= σ

∫

V

[
2Rawθ − |∇u|2 −Ra|∇θ|2

]
dV (∗)

where w = u · ẑ. What happens to this energy if Ra = 0?

(ii) Using the constraint that ∇ · u = 0 with the Lagrange multiplier field 2p(x),
show that the variational principle to stationarize the integral on the right hand
side of (∗) gives the Euler-Lagrange equations

0 = −∇p+ σRaθẑ + σ∇2u,

0 = w +∇2θ,

∇ · u = 0.

Confirm that if these equations have a solution, then the energy in (∗) does not
initially decay.

(iii) Now relate the linear eigenvalue problem assuming (u, θ, p) ∝ eλt to the problem
in (ii). If you are told that the eigenvalues are all real and the largest eigenvalue
λm of the linear stability problem first reaches 0 (from below) as Ra reaches
Racrit (from below), deduce what this means for the energy growth possible on
the basic state.

(iv) Confirm that the linear operator L you have written down in (iii) is normal by
showing that it is self-adjoint under the inner product implied in (∗) i.e.

〈Φi,Φj〉 :=

∫

V
[uiuj + σRa θiθj ] dV

where Φi = (ui, θi, pi) and Φj = (uj , θj , pj).
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Consider the stability of an inviscid Boussinesq fluid in a frame rotating with steady
angular velocity Ωẑ such that the equations are

∂u∗

∂t∗
+ u∗ · ∇∗u∗ + 2Ω ẑ× u∗ = − 1

ρ0
∇∗p∗ + αg(θ∗ − θ∗0)ẑ,

∂θ∗

∂t∗
+ u∗ · ∇∗θ∗ = 0,

∇∗ · u∗ = 0

where starred variables have dimensions, with boundary conditions that u∗ · ŷ = 0 on
y = 0 and L, and u∗ · ẑ = 0 on z = 0 and L (g = gẑ is the acceleration due to gravity and
α is the coefficient of thermal expansion).

(a) Introducing non-dimensional variables as follows

u := u∗/V, θ := (θ∗ − θ∗0)/∆θ, p := p∗/(2ρ0ΩLV ), t := V t∗/L, x :=
x∗

L
,

show how the equations non-dimensionalise to

Ro

[
∂u

∂t
+ u · ∇u

]
+ ẑ× u = −∇p+

B

Ro
θẑ,

∂θ

∂t
+ u · ∇θ = 0,

∇ · u = 0

where

Ro :=
V

2ΩL
, B :=

αg∆θ

4Ω2L

are respectively the Rossby and Burgers numbers.

(b) Confirm that

U = zx̂, Θ = z − Ro

B
y

can form a steady basic state with an appropriate pressure field P which should be
determined.

(c) Linearise the equations in (a) around the base state of (b) using the expansions

u = (z + u′)x̂ + v′ŷ +Row′ẑ,

p = P + p′,

θ = Θ +Ro θ′.

(d) Using your linearised equations in (c), show that the vertical perturbation vorticity
equation is (

∂

∂t
+ z

∂

∂x

)(
∂v′

∂x
− ∂u′

∂y

)
=
∂w′

∂z
+Ro

∂w′

∂y
.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) By considering the Ro → 0 limit of the u′, v′ and w′ equations, show that the linear
problem can be reduced to

(
∂

∂t
+ z

∂

∂x

)(
∂2p′

∂z2
+B

[
∂2p′

∂x2
+
∂2p′

∂y2

])
= 0

with boundary conditions

∂p′

∂x
= 0

∣∣∣∣
y=0,1

&

(
∂

∂t
+ z

∂

∂x

)
∂p′

∂z
=
∂p′

∂x

∣∣∣∣
z=0,1

.

(f) Look for normal mode solutions of your problem in (e) of the form

p′ = p(z) sin(nπy)eiα(x−ct)

and hence show

c =
1

2
±
√
(λ cothλ− 1)(λ tanhλ− 1)

2λ

where λ := 1
2

√
B(α2 + n2π2) for n = 1, 2, 3, . . ..

(g) Deduce that instability only occurs when λ tanhλ < 1.

END OF PAPER
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