MAMA/329, NST3AS/329, MAAS/329

MAT3 MATHEMATICAL TRIPOS Part III

Monday, 5 June, 2023 $-1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 329

SLOW VISCOUS FLOW

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1 (a) State the Papkovich–Neuber representation for the velocity and pressure in Stokes flow. Use this representation, explaining your choice of trial harmonic potentials, to determine the velocity field due to a rigid sphere of radius a moving with velocity **U** through unbounded fluid of viscosity μ .

(b) Two rigid spheres of radius a are a vector distance **R** apart in unbounded fluid, where $a \ll R$. The first sphere is acted on by a constant force $\mathbf{F} = 6\pi\mu a \mathbf{V}$, the second sphere is force free, and both spheres are couple free.

Find the velocity \mathbf{U}_2 of the second sphere, correct to $O(Va^3/R^3)$, assuming that the velocity due to the first sphere is unperturbed to this order.

[You may assume the Faxén formula $\mathbf{U} = \frac{\mathbf{F}}{6\pi\mu a} + \mathbf{u}_{\infty} + \frac{a^2}{6}\nabla^2 \mathbf{u}_{\infty}$, but should explain how you apply it.]

Use scaling arguments to explain why the velocity \mathbf{U}_1 of the first sphere differs from \mathbf{V} by $O(Va^4/R^4)$. Explain why the next correction to \mathbf{U}_2 is not $O(Va^5/R^5)$, but $O(Va^7/R^7)$.

(c) Cartesian coordinates are defined for the problem in part (b) such that $\mathbf{V} = (V, 0, 0)$, with V > 0, and that the centres of the two spheres are at $(X_1(t), Y_1(t), 0)$ and $(X_2(t), Y_2(t), 0)$, respectively. At t = 0, $X_1 = X_2 = Y_1 = 0$ and $Y_2 = Y_0 \gg a$.

Using the results in part (b), and explaining any further approximations, show that

$$\frac{\mathrm{d}Y_2/\mathrm{d}t}{\mathrm{d}X_1/\mathrm{d}t} = -\frac{3a}{4} \frac{X_1 Y_0}{(X_1^2 + Y_0^2)^{3/2}} \,.$$

Deduce the leading-order approximation to $\lim_{t\to\infty} Y_2(t) - Y_0$. What happens to $X_2(t)$ as $t\to\infty$?

CAMBRIDGE

2 A planar sheet of fluid of viscosity μ undergoes extension. With respect to Cartesian axes, the sheet occupies $-h(x,t) \leq z \leq h(x,t)$. There is no flow or variation in the *y*-direction, so that the velocity $\mathbf{u}(x,z,t) = (u,0,w)$. The sheet is acted upon by surface tension, with constant coefficient γ , but the effects of gravity and inertia are negligible.

(a) Assuming that $\partial h/\partial x \ll 1$, explain why *u* is approximately independent of *z* and derive equations for w(x, z, t) and σ_{zz} . Deduce that

$$\sigma_{xx} = -p_a + \gamma \frac{\partial^2 h}{\partial x^2} + 4\mu \frac{\partial u}{\partial x},$$

where p_a is the uniform pressure outside the sheet.

Draw a diagram to show all of the forces acting on a fluid slice of length δx and varying thickness. Deduce that

$$\frac{\partial}{\partial x} \left(4\mu h \frac{\partial u}{\partial x} \right) + \gamma h \frac{\partial^3 h}{\partial x^3} = 0.$$
 (1)

Obtain a second relationship between h(x,t) and u(x,t) using mass conservation.

(b) Two cylindrical gas bubbles of radius a are gently pressed against one another by a weak external flow in the surrounding liquid. Deformation of the bubbles is negligible except in a flat region of fixed length 2L where the bubbles are separated by a thin liquid sheet of thickness $h_0(x,t) \ll L$.

Making reference to the pressure in the flat region and in the external fluid, explain why the liquid drains out of the sheet.

Within the flat region, the sheet thickness h_0 is initially independent of x. Using (1), show that u = Ux/L for some U(t). Deduce that h_0 remains independent of x and obtain an ordinary differential equation for $h_0(t)$ in terms of U.

(c) The value of U is controlled by short transition regions at each end of the sheet over which the interfacial curvature changes from 0 to 1/a. The lengthscale δ of these regions satisfies $h_0 \ll \delta \ll L$. Use scaling arguments to show that (i) $\delta \sim (ah_0)^{1/2}$, (ii) $U \sim (\gamma/\mu) (h_0/a)^{1/2}$ and (iii) the flux uh is approximately constant throughout the transition region.

(d) Use scaled variables $\xi \equiv (x - L)/(ah_0)^{1/2}$ and $H = h/h_0$ to rescale (1) in the transition region, and eliminate u to obtain a third-order differential equation for $H(\xi)$. Integrate this twice to show that

$$H^{-1/2}H_{\xi} = \frac{8V}{3} \left(1 - H^{-3/2}\right) \,,$$

where V is a suitable dimensionless parameter. [*Hint*: The second integration uses an integrating factor.] By considering the behaviour of H as $\xi \to \infty$, show that

$$U = \frac{3\gamma}{8\mu} \left(\frac{2h_0}{a}\right)^{1/2}$$

(e) Hence determine $h_0(t)$ and comment on its large-time behaviour.

Part III, Paper 329

[TURN OVER]

3 A thin layer of viscous fluid flows steadily down a rigid plane that is inclined at angle $\alpha \ll 1$ to the horizontal. Far upslope the layer has uniform thickness h_0 , but further down the slope something causes variations in thickness. Surface tension is negligible.

(a) Use the equations of lubrication theory to derive the dimensionless equation

$$\mathbf{\nabla \cdot}(h^3 \mathbf{e}_x) = \mathbf{\nabla \cdot}(h^3 \mathbf{\nabla} h)$$

where \mathbf{e}_x is a unit vector pointing downslope, $h(x, y) \to 1$ as $x \to -\infty$ and the dimensionless variables should be defined.

(b) Suppose first there is no cross-slope variation. Show that $h(x) \sim 1 + Ae^{kx}$ as $x \to -\infty$, where A and k are constants and k is to be determined. If A > 0 show that

$$h \sim x - x_0 + O(x^{-2})$$
 as $x \to \infty$,

where x_0 is a constant. [*Hint*: You do not need to find the exact integral of dx/dh.] Sketch the profile of this flow on the original inclined plane and describe what it represents.

(c) Suppose, instead, there is a large semicircular barrier with position defined by $x^2 + y^2 = R^2$, x < 0, where $R \gg 1$. The barrier protrudes normal to the plane, and the flow must go round it. Let (r, ϕ) denote polar coordinates with $\phi = 0$ pointing upslope (so $x = -r \cos \phi$), and let s = r - R. Assume that, for $-\pi/2 < \phi < \pi/2$, the flow thickness has the approximate form

$$h(r,\phi) = H(\phi) \left(1 - \frac{s}{\Delta(\phi)}\right) \text{ for } 0 < s < \Delta(\phi), \qquad h \approx 1 \text{ for } s > \Delta(\phi),$$

where $H(\phi) \gg 1$ and $1 \ll \Delta(\phi) \ll R$.

By considering the flux in the s-direction, explain why this form is a reasonable assumption provided $H = \Delta \cos \phi$.

Sketch the streamlines of the flow in x < 0. Calculate the leading-order approximation to the total flux in the ϕ -direction in $0 < s < \Delta$, and deduce that $H = (4R \cos \phi)^{1/4}$.

(d) State briefly why the form of solution assumed in part (c) is clearly inconsistent as $\overline{\phi} \to 0$, where $\overline{\phi} = \pi/2 - \phi$.

Assume that a transition to another form of solution occurs when $\partial h^3/(R \partial \phi)$ is no longer much smaller than $\partial h^3/\partial r$. Use order-of-magnitude estimates to show that this is when $\overline{\phi} = O(R^{-a})$, where 0 < a < 1 is to be found, and find the corresponding scalings of H and Δ with R.

(e) Describe qualitatively and physically the expected form of the downslope flow in x > 0. Include a brief scaling argument for why there is a change of behaviour at $x = O(R^2)$, but do not attempt any detailed calculations.

END OF PAPER