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1 (a) State the Papkovich–Neuber representation for the velocity and pressure in
Stokes flow. Use this representation, explaining your choice of trial harmonic potentials,
to determine the velocity field due to a rigid sphere of radius a moving with velocity U
through unbounded fluid of viscosity µ.

(b) Two rigid spheres of radius a are a vector distance R apart in unbounded fluid,
where a � R. The first sphere is acted on by a constant force F = 6πµaV, the second
sphere is force free, and both spheres are couple free.

Find the velocity U2 of the second sphere, correct to O(V a3/R3), assuming that
the velocity due to the first sphere is unperturbed to this order.

[You may assume the Faxén formula U =
F

6πµa
+u∞ +

a2

6
∇2u∞ , but should explain how

you apply it.]

Use scaling arguments to explain why the velocity U1 of the first sphere differs
from V by O(V a4/R4). Explain why the next correction to U2 is not O(V a5/R5), but
O(V a7/R7).

(c) Cartesian coordinates are defined for the problem in part (b) such that V =
(V, 0, 0), with V > 0, and that the centres of the two spheres are at

(
X1(t), Y1(t), 0

)
and(

X2(t), Y2(t), 0
)
, respectively. At t = 0, X1 = X2 = Y1 = 0 and Y2 = Y0 � a.

Using the results in part (b), and explaining any further approximations, show that

dY2/dt

dX1/dt
= −3a

4

X1Y0

(X2
1 + Y 2

0 )3/2
.

Deduce the leading-order approximation to lim
t→∞

Y2(t) − Y0. What happens to X2(t) as

t→∞?
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2 A planar sheet of fluid of viscosity µ undergoes extension. With respect to Cartesian
axes, the sheet occupies −h(x, t) 6 z 6 h(x, t). There is no flow or variation in the y-
direction, so that the velocity u(x, z, t) = (u, 0, w). The sheet is acted upon by surface
tension, with constant coefficient γ, but the effects of gravity and inertia are negligible.

(a) Assuming that ∂h/∂x � 1, explain why u is approximately independent of z
and derive equations for w(x, z, t) and σzz. Deduce that

σxx = −pa + γ
∂2h

∂x2
+ 4µ

∂u

∂x
,

where pa is the uniform pressure outside the sheet.

Draw a diagram to show all of the forces acting on a fluid slice of length δx and
varying thickness. Deduce that

∂

∂x

(
4µh

∂u

∂x

)
+ γh

∂3h

∂x3
= 0 . (1)

Obtain a second relationship between h(x, t) and u(x, t) using mass conservation.

(b) Two cylindrical gas bubbles of radius a are gently pressed against one another
by a weak external flow in the surrounding liquid. Deformation of the bubbles is negligible
except in a flat region of fixed length 2L where the bubbles are separated by a thin liquid
sheet of thickness h0(x, t)� L.

Making reference to the pressure in the flat region and in the external fluid, explain
why the liquid drains out of the sheet.

Within the flat region, the sheet thickness h0 is initially independent of x. Using
(1), show that u = Ux/L for some U(t). Deduce that h0 remains independent of x and
obtain an ordinary differential equation for h0(t) in terms of U .

(c) The value of U is controlled by short transition regions at each end of the sheet
over which the interfacial curvature changes from 0 to 1/a. The lengthscale δ of these
regions satisfies h0 � δ � L. Use scaling arguments to show that (i) δ ∼ (ah0)

1/2,

(ii) U ∼
(
γ/µ

)(
h0/a

)1/2
and (iii) the flux uh is approximately constant throughout the

transition region.

(d) Use scaled variables ξ ≡ (x − L)/(ah0)
1/2 and H = h/h0 to rescale (1) in the

transition region, and eliminate u to obtain a third-order differential equation for H(ξ).
Integrate this twice to show that

H−1/2Hξ =
8V

3

(
1−H−3/2

)
,

where V is a suitable dimensionless parameter. [Hint: The second integration uses an
integrating factor.] By considering the behaviour of H as ξ →∞, show that

U =
3γ

8µ

(
2h0
a

)1/2

.

(e) Hence determine h0(t) and comment on its large-time behaviour.
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3 A thin layer of viscous fluid flows steadily down a rigid plane that is inclined at
angle α� 1 to the horizontal. Far upslope the layer has uniform thickness h0, but further
down the slope something causes variations in thickness. Surface tension is negligible.

(a) Use the equations of lubrication theory to derive the dimensionless equation

∇·(h3ex) =∇·(h3∇h) ,

where ex is a unit vector pointing downslope, h(x, y) → 1 as x → −∞ and the
dimensionless variables should be defined.

(b) Suppose first there is no cross-slope variation. Show that h(x) ∼ 1 + Aekx as
x→ −∞, where A and k are constants and k is to be determined. If A > 0 show that

h ∼ x− x0 +O(x−2) as x→∞ ,

where x0 is a constant. [Hint: You do not need to find the exact integral of dx/dh.] Sketch
the profile of this flow on the original inclined plane and describe what it represents.

(c) Suppose, instead, there is a large semicircular barrier with position defined by
x2 + y2 = R2, x < 0, where R � 1. The barrier protrudes normal to the plane, and the
flow must go round it. Let (r, φ) denote polar coordinates with φ = 0 pointing upslope (so
x = −r cosφ), and let s = r − R. Assume that, for −π/2 < φ < π/2, the flow thickness
has the approximate form

h(r, φ) = H(φ)

(
1− s

∆(φ)

)
for 0 < s < ∆(φ) , h ≈ 1 for s > ∆(φ) ,

where H(φ)� 1 and 1� ∆(φ)� R.

By considering the flux in the s-direction, explain why this form is a reasonable
assumption provided H = ∆ cosφ.

Sketch the streamlines of the flow in x < 0. Calculate the leading-order approxima-
tion to the total flux in the φ-direction in 0 < s < ∆, and deduce that H = (4R cosφ)1/4.

(d) State briefly why the form of solution assumed in part (c) is clearly inconsistent
as φ→ 0, where φ = π/2− φ.

Assume that a transition to another form of solution occurs when ∂h3/(R∂φ) is no
longer much smaller than ∂h3/∂r. Use order-of-magnitude estimates to show that this is
when φ = O(R−a), where 0 < a < 1 is to be found, and find the corresponding scalings of
H and ∆ with R.

(e) Describe qualitatively and physically the expected form of the downslope flow
in x > 0. Include a brief scaling argument for why there is a change of behaviour at
x = O(R2), but do not attempt any detailed calculations.
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