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(a)
(i) For a quantum unitary circuit C on n qubits followed by a projective measurement

of k < n qubits in the computational basis, define the notions of strong and weak classical
simulation. State the Extended Gottesman Knill Theorem.

(ii) Let C be an adaptive Clifford circuit acting on n+t qubits initialized in |o) ® |p)
where |o) is a stabilizer state on n qubits and |p) is any state on ¢ qubits. Some of the Z
measurements in C are postselected to outcome +1. Show that this circuit can be weakly
simulated by a corresponding Pauli-Based Computational (PBC) circuit in which some of
the Pauli measurements are postselected to outcome +1.

(b)

(i) Consider the circuit depicted in Figure 1 below acting on the input state |4)®2|0);
for o; € {I, X, Y, Z}, i = 1,2 denotes a single-qubit Pauli operation and the computational
basis measurement on the third qubit yields the outcome s € {0,1}. Write down the
expression for |¥,). Consider the PBC depicted in Figure 2, where P; = 01 ® 09. Express
|Wp) in terms of the eigenstates of P;. Compare |¥,) to |Up).

|A) (7]
}I\Ifa> |A)
|A) (03) P }l\Ifb>
S |4)
0) (A
Figure 1 Figure 2

(i) We wish to implement a two-qubit PBC on input |A)®?|0) (where |0) is an
ancilla qubit) consisting of first measuring Py = Z ® I followed by P, = Z ® X on |A)®2.
Let |Wey) be the two-qubit output state of the PBC process. In the laboratory we are able
to apply single- and two-qubit Clifford operations on the input state and ancilla qubits
and perform computational basis measurements on any ancilla qubits. Show how we can
generate |W,,) in the laboratory with the help of a single ancilla qubit (initialized in state
|0)) thus implementing this instance of the PBC.
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(a) Describe the Harrow-Hassidim-Lloyd (HHL) algorithm for estimating (z|M|x),
where the associated system of equations is given by Az = b, with z,b € CV, and A, M
are Hermitian. Include a clear statement of any results that you use. You may assume
that NV = 2™, the usually prescribed conditions on the ingredients A,b and M have been
fulfilled, and that any operations used are error-free.

(b) State the usually prescribed conditions on vector b in (a) which ensure that the
associated normalized state |b) in the HHL algorithm can be efficiently prepared.

(c) Consider a probability distribution function p of a random variable X which takes
values on [0, 1]. We wish to prepare a state that represents the N—point discretization of
p, where N = 2". For m > 1 we partition [0, 1] into 2™ intervals labelled i = 0,...,2™ —1
from left to right with the i-th interval being [z}, 2%)].

Suppose we have the state [i,) = Z?:(;l pgm)m, where pl(m) is the probability
for the random variable X to lie in the interval i. Consider f(i) = A;/B;, where

i+ 1 2 1
A; = fz(;R )/ p(x)dx, B; = f;fp(m)dx.
(i) Assuming that each A;, B; can be computed efficiently, describe how to generate
[m) = 32205 pgm)|i>|l9¢), from [1),,) (adding ancillary qubits), where 6; = arccos(v/f;).
(ii) Describe how to perform a controlled rotation of angle 6; which maps

pgm)]z)]01> — pgm)\i>\9i>(cos(0¢)]0> + sin(6;)[1)) as an O(polylog(NN))— sized circuit
of 1- and 2-qubit gates. You may ignore any issues of precision that arise.

(iii) Using the above, describe an algorithm for generating |v¢,,) = Z?Zg ! pgn)m

from [11), thereby generating the desired N-point discretization state for p.
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(i) Suppose that G is a linear subspace of state space H and let G+ be the orthogonal
complement of G in H. Let [)) be any state in H. Define the operator I}, of reflection
in the hyperplane orthogonal to [¢)), and the operator Ig, of reflection in the subspace
G*. In terms of these, state and prove the Amplitude Amplification (AA) Theorem for a
rotation R that you should define.

(ii) Suppose we are given a quantum oracle Uy for a function f : {0,1}" — {0, 1}.
For H being the state space of n qubits let G = span{|z) : f(z) = 1} and G+ = span{|z) :
f(z) = 0}. We say that = is “good” if f(z) = 1, and “bad” if f(x) = 0. Suppose we
have the n-qubit starting state |ts;) = sin(6)|g) + cos(#)|b), where |g) € G, |b) € G+ and
the value of 6 € (0,7/2) is known. Show how the AA theorem may be used to provide
a process (possibly including extra ancilla qubits) which will map |i)g) to a state upon
which a final computational basis measurement will yield a good x with certainty.

(iii) Suppose now that the value of # € (0,7/2) in (ii) is unknown but we can still
prepare the state [¢s). Let n* € N be the least number of iterations of the R in the AA
theorem that is needed to rotate |1s) closest to its good projection |g). We will employ
the following strategy to find a good z: for each kK =0, 1,... in turn we prepare |i5) and
apply R k times before making a final measurement. We continue until we obtain a good
x. Suppose this occurs for £ = k*. Compute the expected number of oracle calls needed
to obtain a good x. Show that Problk* > n*| > const > 0.

(iv) For the scenario of (iii) suppose now that n* = 2%, N € N and we modify the
strategy in (iii) as follows. Instead of considering each k = 0,1,2,3... in turn we use only
the values k = 2%, =0,1,2,... in turn. Compute the expected number of oracle calls in
this case needed to obtain a good z and compare it to the result of (iii).
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(a)

(i) Consider the n-qubit Pauli group P, = {kPI ® ... ® P, @ k =
+1,44; and each P, € {X,Y,Z,1}. Let S = {I, 2125, Z275,71Z3}. Determine the 3-
qubit subspace Vg which is stabilized by the elements of S.

(ii) Let U = CNOT}3. Determine the elements of Py obtained by the following
conjugations: UX UT, UX,UT,UZ,UY,UZ,UT. Suppose that V is another 2-qubit unitary
operator that transforms Z1, Zs, X1, Xo under conjugation in the same way as U above.
Show that V = U up to an overall phase.

(iii) Consider the following two-qubit operators V,, = exp(ZX ® X), W, =
(I® H)V,(I ® H), where H is the Hadamard gate, and n = 1,2. Find A, such that
VoW, = exp(id,). Is V,,W,, a Clifford operation?

(b) For any graph G = (V| E), introduce |V| qubits labelled by the vertices of G.
Introduce also a corresponding so-called graph state given by |G) = []; ep CZ;j|+)®Vl.

(i) Consider two graphs G4 = (Va,E4), where V4 = {1,2,3} and E4 =
{(1,2),(2,3)}, and Gp = (VB, EB), where Vg = {1,2,3} and Ep = {(1,2),(2,3),(3,1)}.
Compute their corresponding graph states |G 4) and |Gp).

(ii) To each vertex v of G we can associate an operator Sy = Xy [[,en(y) Zu, where
N (v) is the set of vertices which are adjacent to v. Show that for G = G4 and Gp, the
corresponding operators .S, commute for each vertex v € {1, 2, 3}.

(iii) Let |a), |B) be states where |5) = Ula) and |«) is stabilized by S. Show that
|B) is stabilized by USUT. You may assume without proof that the graph state |G) can
also be defined as the simultaneous +1 eigenstate of the |V| stabilizer operators {Sy }yev:
Sy|G) = |G). Show how the stabilizer group of |Gp) can be obtained via a suitable
mapping of the stabilizer group of |G ).

END OF PAPER
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