MAMA/324, NST3AS/324, MAAS/324

MAT3 MATHEMATICAL TRIPOS Part III

Friday, 2 June, 2023 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 324

QUANTUM COMPUTATION

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a)

(i) For a quantum unitary circuit C on n qubits followed by a projective measurement of $k \leq n$ qubits in the computational basis, define the notions of strong and weak classical simulation. State the Extended Gottesman Knill Theorem.

(ii) Let C be an adaptive Clifford circuit acting on n+t qubits initialized in $|\sigma\rangle \otimes |\rho\rangle$ where $|\sigma\rangle$ is a stabilizer state on n qubits and $|\rho\rangle$ is any state on t qubits. Some of the Zmeasurements in C are postselected to outcome +1. Show that this circuit can be weakly simulated by a corresponding Pauli-Based Computational (PBC) circuit in which some of the Pauli measurements are postselected to outcome +1.

(b)

(i) Consider the circuit depicted in Figure 1 below acting on the input state $|A\rangle^{\otimes 2}|0\rangle$; for $\sigma_i \in \{\mathbb{I}, X, Y, Z\}$, i = 1, 2 denotes a single-qubit Pauli operation and the computational basis measurement on the third qubit yields the outcome $s \in \{0, 1\}$. Write down the expression for $|\Psi_a\rangle$. Consider the PBC depicted in Figure 2, where $P_1 = \sigma_1 \otimes \sigma_2$. Express $|\Psi_b\rangle$ in terms of the eigenstates of P_1 . Compare $|\Psi_a\rangle$ to $|\Psi_b\rangle$.

(ii) We wish to implement a two-qubit PBC on input $|A\rangle^{\otimes 2}|0\rangle$ (where $|0\rangle$ is an ancilla qubit) consisting of first measuring $P_1 = Z \otimes \mathbb{I}$ followed by $P_2 = Z \otimes X$ on $|A\rangle^{\otimes 2}$. Let $|\Psi_{out}\rangle$ be the two-qubit output state of the PBC process. In the laboratory we are able to apply single- and two-qubit Clifford operations on the input state and ancilla qubits and perform computational basis measurements on any ancilla qubits. Show how we can generate $|\Psi_{out}\rangle$ in the laboratory with the help of a single ancilla qubit (initialized in state $|0\rangle$) thus implementing this instance of the PBC. $\mathbf{2}$

(a) Describe the Harrow-Hassidim-Lloyd (HHL) algorithm for estimating $\langle x|M|x\rangle$, where the associated system of equations is given by $A\underline{x} = \underline{b}$, with $\underline{x}, \underline{b} \in \mathbb{C}^N$, and A, Mare Hermitian. Include a clear statement of any results that you use. You may assume that $N = 2^n$, the usually prescribed conditions on the ingredients A, \underline{b} and M have been fulfilled, and that any operations used are error-free.

(b) State the usually prescribed conditions on vector \underline{b} in (a) which ensure that the associated normalized state $|b\rangle$ in the HHL algorithm can be efficiently prepared.

(c) Consider a probability distribution function p of a random variable X which takes values on [0, 1]. We wish to prepare a state that represents the N-point discretization of p, where $N = 2^n$. For m > 1 we partition [0, 1] into 2^m intervals labelled $i = 0, \ldots, 2^m - 1$ from left to right with the *i*-th interval being $[x_L^i, x_B^i]$.

Suppose we have the state $|\psi_m\rangle = \sum_{i=0}^{2^m-1} \sqrt{p_i^{(m)}} |i\rangle$, where $p_i^{(m)}$ is the probability for the random variable X to lie in the interval *i*. Consider $f(i) = A_i/B_i$, where $A_i = \int_{x_L^i}^{(x_R^i + x_L^i)/2} p(x) dx$, $B_i = \int_{x_L^i}^{x_R^i} p(x) dx$.

(i) Assuming that each A_i, B_i can be computed efficiently, describe how to generate $|\tilde{\psi}_m\rangle = \sum_{i=0}^{2^m-1} \sqrt{p_i^{(m)}} |i\rangle |\theta_i\rangle$, from $|\psi_m\rangle$ (adding ancillary qubits), where $\theta_i = \arccos(\sqrt{f_i})$. (ii) Describe how to perform a controlled rotation of angle θ_i which maps $\sqrt{p_i^{(m)}} |i\rangle |\theta_i\rangle \rightarrow \sqrt{p_i^{(m)}} |i\rangle |\theta_i\rangle (\cos(\theta_i)|0\rangle + \sin(\theta_i)|1\rangle)$ as an $O(\operatorname{poly} \log(N))$ sized circuit of 1- and 2-qubit gates. You may ignore any issues of precision that arise.

(iii) Using the above, describe an algorithm for generating $|\psi_n\rangle = \sum_{i=0}^{2^n-1} \sqrt{p_i^{(n)}} i \lambda$ from $|\psi_1\rangle$, thereby generating the desired N-point discretization state for p.

3

(i) Suppose that G is a linear subspace of state space \mathcal{H} and let G^{\perp} be the orthogonal complement of G in \mathcal{H} . Let $|\psi\rangle$ be any state in \mathcal{H} . Define the operator $I_{|\psi\rangle}$ of reflection in the hyperplane orthogonal to $|\psi\rangle$, and the operator I_G , of reflection in the subspace G^{\perp} . In terms of these, state and prove the Amplitude Amplification (AA) Theorem for a rotation R that you should define.

(ii) Suppose we are given a quantum oracle U_f for a function $f : \{0,1\}^n \to \{0,1\}$. For \mathcal{H} being the state space of n qubits let $G = \operatorname{span}\{|x\rangle : f(x) = 1\}$ and $G^{\perp} = \operatorname{span}\{|x\rangle : f(x) = 0\}$. We say that x is "good" if f(x) = 1, and "bad" if f(x) = 0. Suppose we have the n-qubit starting state $|\psi_{st}\rangle = \sin(\theta)|g\rangle + \cos(\theta)|b\rangle$, where $|g\rangle \in G, |b\rangle \in G^{\perp}$ and the value of $\theta \in (0, \pi/2)$ is known. Show how the AA theorem may be used to provide a process (possibly including extra ancilla qubits) which will map $|\psi_{st}\rangle$ to a state upon which a final computational basis measurement will yield a good x with certainty.

(iii) Suppose now that the value of $\theta \in (0, \pi/2)$ in (ii) is unknown but we can still prepare the state $|\psi_{st}\rangle$. Let $n^* \in \mathbb{N}$ be the least number of iterations of the R in the AA theorem that is needed to rotate $|\psi_{st}\rangle$ closest to its good projection $|g\rangle$. We will employ the following strategy to find a good x: for each $k = 0, 1, \ldots$ in turn we prepare $|\psi_{st}\rangle$ and apply R k times before making a final measurement. We continue until we obtain a good x. Suppose this occurs for $k = k^*$. Compute the expected number of oracle calls needed to obtain a good x. Show that $Prob[k^* \ge n^*] \ge const > 0$.

(iv) For the scenario of (iii) suppose now that $n^* = 2^N, N \in \mathbb{N}$ and we modify the strategy in (iii) as follows. Instead of considering each k = 0, 1, 2, 3... in turn we use only the values $k = 2^i, i = 0, 1, 2, ...$ in turn. Compute the expected number of oracle calls in this case needed to obtain a good x and compare it to the result of (iii).

 $\mathbf{4}$

(a)

(i) Consider the *n*-qubit Pauli group $\mathcal{P}_n = \{kP_1 \otimes \ldots \otimes P_n : k = \pm 1, \pm i; \text{ and each } P_i \in \{X, Y, Z, \mathbb{I}\}.$ Let $S = \{\mathbb{I}, Z_1Z_2, Z_2Z_3, Z_1Z_3\}.$ Determine the 3-qubit subspace V_S which is stabilized by the elements of S.

(ii) Let $U = CNOT_{12}$. Determine the elements of \mathcal{P}_2 obtained by the following conjugations: $UX_1U^{\dagger}, UX_2U^{\dagger}, UZ_1U^{\dagger}, UZ_2U^{\dagger}$. Suppose that \tilde{V} is another 2-qubit unitary operator that transforms Z_1, Z_2, X_1, X_2 under conjugation in the same way as U above. Show that $\tilde{V} = U$ up to an overall phase.

(iii) Consider the following two-qubit operators $V_n = \exp(\frac{i\pi}{n}X \otimes X)$, $W_n = (\mathbb{I} \otimes H)V_n(\mathbb{I} \otimes H)$, where H is the Hadamard gate, and n = 1, 2. Find A_n such that $V_nW_n = \exp(iA_n)$. Is V_nW_n a Clifford operation?

(b) For any graph G = (V, E), introduce |V| qubits labelled by the vertices of G. Introduce also a corresponding so-called graph state given by $|G\rangle = \prod_{(i,j)\in E} CZ_{ij}|+\rangle^{\otimes |V|}$.

(i) Consider two graphs $G_A = (V_A, E_A)$, where $V_A = \{1, 2, 3\}$ and $E_A = \{(1, 2), (2, 3)\}$, and $G_B = (V_B, E_B)$, where $V_B = \{1, 2, 3\}$ and $E_B = \{(1, 2), (2, 3), (3, 1)\}$. Compute their corresponding graph states $|G_A\rangle$ and $|G_B\rangle$.

(ii) To each vertex v of G we can associate an operator $S_v = X_v \prod_{u \in N(v)} Z_u$, where N(v) is the set of vertices which are adjacent to v. Show that for $G = G_A$ and G_B , the corresponding operators S_v commute for each vertex $v \in \{1, 2, 3\}$.

(iii) Let $|\alpha\rangle$, $|\beta\rangle$ be states where $|\beta\rangle = U|\alpha\rangle$ and $|\alpha\rangle$ is stabilized by S. Show that $|\beta\rangle$ is stabilized by USU^{\dagger} . You may assume without proof that the graph state $|G\rangle$ can also be defined as the simultaneous +1 eigenstate of the |V| stabilizer operators $\{S_v\}_{v\in V}$: $S_v|G\rangle = |G\rangle$. Show how the stabilizer group of $|G_B\rangle$ can be obtained via a suitable mapping of the stabilizer group of $|G_A\rangle$.

END OF PAPER