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1

In the model of the compressible shearing sheet, a self-gravitating disc has surface
density Σ(x, y, t) and velocity u(x, y, t) satisfying the equation of mass conservation,

∂Σ

∂t
+∇ · (Σu) = 0 ,

and the equation of motion,

∂u

∂t
+ u · ∇u + 2Ω× u = −∇Φt,m −∇Φd,m −

1

Σ
∇P +

1

Σ
∇ ·T ,

where Φt,m is the tidal potential in the midplane z = 0, Φd,m is the gravitational potential
of the disc in the midplane, and the viscous stress tensor T is given in terms of the
kinematic shear viscosity ν and bulk viscosity νb by

Tij = νΣ

(
∂ui
∂xj

+
∂uj
∂xi

)
+
(
νb − 2

3ν
)

Σ
∂uk
∂xk

δij .

Assume that the two-dimensional pressure is given by a barotropic relation P = P (Σ) and
that the viscosity coefficients are also functions of the surface density.

(a) Explain how Φd,m is related to Σ within this local model of a disc, when the thickness
of the disc is neglected. Give an explicit expression for the horizontal Fourier transform
of Φd,m in terms of the Fourier transform of Σ.

(b) Write down an expression for Φt,m in terms of the angular velocity Ω, assuming
that the disc is Keplerian. Define an appropriate steady solution of this local model
representing a uniform disc in circular orbital motion. Why does the viscous stress in
this state not lead to an accretion flow?

(c) Formulate the linearized equations governing small perturbations ∝ exp(ikxx + λt),
and independent of y, to this steady solution. Hence derive the dispersion relation

(λ+ νk2)
{
λ
[
λ+

(
νb + 4

3ν
)
k2
]
− 2πGΣk + v2s k

2
}

+ λΩ2 + 3βΩ2νk2 = 0 ,

giving the growth rate λ of axisymmetric waves in terms of their wavenumber k = |kx|,
where vs is the adiabatic sound speed and

β =
d ln(νΣ)

d ln Σ
.

(d) First simplify the dispersion relation in the case of an inviscid disc. Show that such a
disc is unstable to axisymmetric modes when

Q =
vsΩ

πGΣ
< 1 .

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) Now consider the case of a viscous disc, in which different modes of instability are
possible. You may assume that a necessary condition for the roots of the real cubic
equation

λ3 + aλ2 + bλ+ c = 0

all to have Re(λ) 6 0 is that c > 0. Deduce that a viscous disc is unstable in the limit
k → 0 in the case β < 0. How is this result related to an analysis of the diffusion
equation for the viscous evolution of a Keplerian disc? If instead β > 0, show that
the disc is unstable if

3βΩ2 − 2πGΣk + v2s k
2 < 0

for some k > 0, and show further that this occurs when

Q <
1√
3β

.
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2

Consider the gravitational interaction of a disc with a massive satellite in the local
approximation. The equations of 2D gas dynamics for an ideal, non-self-gravitating disc
are

∂Σ

∂t
+∇ · (Σu) = 0

and
∂u

∂t
+ u · ∇u + 2Ω× u = −∇Φt,m −∇Ψ − 1

Σ
∇P ,

where Φt,m = −ΩSx2 is the tidal potential in the midplane and Ψ(x, y, t) is the
gravitational potential due to the satellite. Assume that the two-dimensional pressure
is given by a barotropic relation P = P (Σ). In the absence of the satellite potential, the
basic state is a uniform disc with the orbital shear flow u = −Sx ey.

(a) Derive the linearized equations

DΣ′

Dt
= −Σ

(
∂vx
∂x

+
∂vy
∂y

)
,

Dvx
Dt

− 2Ωvy = −∂Ψ

∂x
− v2s

Σ

∂Σ′

∂x
,

Dvy
Dt

+ (2Ω − S)vx = −∂Ψ

∂y
− v2s

Σ

∂Σ′

∂y

for the disturbance generated by the satellite, where Σ′ and v are the perturbations
of surface density and velocity, vs is the adiabatic sound speed and

D

Dt
=

∂

∂t
− Sx

∂

∂y
.

(b) Show that the quantity

f ′ =
1

Σ

(
∂vy
∂x

− ∂vx
∂y

)
− (2Ω − S)

Σ′

Σ2

satisfies Df ′/Dt = 0, and give a physical interpretation of this result.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(c) When the initial conditions are such that f ′ vanishes, you may assume that the
equations of part (a) can be combined into the form

(
D2

Dt2
+ Ω2

r − v2s∇2

)
vy = (2Ω− S)

∂Ψ

∂x
− D

Dt

∂Ψ

∂y
. (†)

where Ωr is the radial (epicyclic) frequency. [You are not required to derive (†).]
When the disc is unforced (Ψ = 0), show that there are solutions of (†) in the form of
shearing density waves,

vy = Re
[
ṽy(t) eik(t)·x

]
,

provided that the wavevector k(t) evolves in time in a way that you should determine,
and provided that ṽy(t) satisfies the ordinary differential equation (ODE)

d2ṽy
dt2

+ g(t)ṽy = 0 , (‡)

where g(t) is a function that you should determine explicitly.

(d) When the disc is forced by a satellite on a circular orbit, explain why the potential Ψ
can be assumed to be independent of time.

Consider a single Fourier component Ψ = ψ(x) exp(ikyy) of the satellite potential,
and assume that the disc’s response to this is also of the form vy = v(x) exp(ikyy).
From (†), derive an ODE for v(x) describing the radial structure of the density waves
forced by the satellite. [You are not required to work out the form of ψ(x).]

(e) Without solving the equation, show that the homogeneous (unforced) version of the
ODE in part (d) has an oscillatory character for sufficiently large |x|, and show that
the orbital motion of the disc relative to the satellite is supersonic in the oscillatory
regions.

(f) Take the Fourier transform of the ODE in part (d) with respect to x and derive an
ODE for ṽ(kx), where

ṽ(kx) =

∫ ∞

−∞
v(x) e−ikxx dx.

Comment on the relation of this ODE to (‡), bearing in mind the time-dependence of
the shearing wavevector in part (c).

[Hint: For suitably well-behaved u(x),

∫ ∞

−∞
xu(x) e−ikxx dx = i

d

dkx

∫ ∞

−∞
u(x) e−ikxx dx .]
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(a) Derive an expression for the angular frequency Ωz of small vertical oscillations about
a circular orbit in the midplane of an axisymmetric potential Φ(r, z) with reflectional
symmetry. Show that Ωz is equal to the orbital frequency in the case of a spherically
symmetric potential, and explain the reason for this.

(b) A non-self-gravitating perfect gas in the local model of an astrophysical disc satisfies
the three-dimensional equations

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0 ,

∂p

∂t
+ u · ∇p+ γp∇ · u = 0 ,

∂u

∂t
+ u · ∇u + 2Ω× u = −∇Φt −

1

ρ
∇p ,

where γ is the adiabatic exponent and Φt = −ΩSx2 + 1
2Ω2

zz
2 is the tidal potential.

For a steady solution u = −Sx ey, ρ = ρ(z), p = p(z), derive the equation of
vertical hydrostatic equilibrium and show that the surface density Σ and the vertically
integrated pressure P are related by P = ΣH2Ω2

z, if the scaleheight H is defined such
that H2 is the mass-weighted average of z2.

(c) Using P , Σ and H as natural units, explain how to express the hydrostatic vertical
structure in a dimensionless form using dimensionless variables (denoted by ˜) that
satisfy the equation

dp̃

dz̃
= −ρ̃z̃

and the normalization conditions
∫
ρ̃ dz̃ =

∫
p̃ dz̃ = 1 ,

where the integrals are over the full vertical extent of the disc. Give one explicit
example of a solution of this dimensionless problem.

(d) Show that the vertical motion of a dust grain, subject to gas drag with a constant
stopping time τ , in a gas disc that is in vertical hydrostatic equilibrium is similar to
a damped harmonic oscillator. Describe the motion of the grain qualitatively.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) Now consider a dynamical situation in which the gas disc is undergoing a uniform
expansion or contraction in the vertical direction, such that the scaleheight is H(t)
and (apart from the orbital shear flow) the motion is independent of x and y. Let
ζ = z/H(t) be a Lagrangian variable that is constant following the motion of the gas
(i.e. Dζ/Dt = 0). Verify that the equations of gas dynamics are satisfied when

ρ =
Σ

H(t)
ρ̃(ζ) , p =

P (t)

H(t)
p̃(ζ) , u = −Sx ey +

dH

dt
ζ ez

(where ρ̃ and p̃ are the same dimensionless functions as in the hydrostatic solution in
part (c), but with z̃ replaced by ζ), provided that H(t) and P (t) satisfy

d2H

dt2
+ Ω2

zH =
P

ΣH
= CH−γ ,

where C and Σ are constants.

(f) Hence obtain an expression, in terms of γ and Ωz, for the angular frequency of small
oscillations of the scaleheight H about its equilibrium value.
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