MAT3 MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2023 1:30 pm to 3:30 pm

PAPER 321

DYNAMICS OF ASTROPHYSICAL DISCS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

In the model of the compressible shearing sheet, a self-gravitating disc has surface density $\Sigma(x, y, t)$ and velocity $\mathbf{u}(x, y, t)$ satisfying the equation of mass conservation,

$$\frac{\partial \Sigma}{\partial t} + \boldsymbol{\nabla} \cdot (\Sigma \mathbf{u}) = 0 \,,$$

and the equation of motion,

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla} \mathbf{u} + 2\boldsymbol{\Omega} \times \mathbf{u} = -\boldsymbol{\nabla} \Phi_{\mathrm{t,m}} - \boldsymbol{\nabla} \Phi_{\mathrm{d,m}} - \frac{1}{\Sigma} \boldsymbol{\nabla} P + \frac{1}{\Sigma} \boldsymbol{\nabla} \cdot \mathbf{T},$$

where $\Phi_{t,m}$ is the tidal potential in the midplane z = 0, $\Phi_{d,m}$ is the gravitational potential of the disc in the midplane, and the viscous stress tensor **T** is given in terms of the kinematic shear viscosity ν and bulk viscosity ν_b by

$$T_{ij} = \nu \Sigma \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \left(\nu_{\rm b} - \frac{2}{3} \nu \right) \Sigma \frac{\partial u_k}{\partial x_k} \, \delta_{ij} \, .$$

Assume that the two-dimensional pressure is given by a barotropic relation $P = P(\Sigma)$ and that the viscosity coefficients are also functions of the surface density.

- (a) Explain how $\Phi_{d,m}$ is related to Σ within this local model of a disc, when the thickness of the disc is neglected. Give an explicit expression for the horizontal Fourier transform of $\Phi_{d,m}$ in terms of the Fourier transform of Σ .
- (b) Write down an expression for $\Phi_{t,m}$ in terms of the angular velocity Ω , assuming that the disc is Keplerian. Define an appropriate steady solution of this local model representing a uniform disc in circular orbital motion. Why does the viscous stress in this state not lead to an accretion flow?
- (c) Formulate the linearized equations governing small perturbations $\propto \exp(ik_x x + \lambda t)$, and independent of y, to this steady solution. Hence derive the dispersion relation

$$(\lambda + \nu k^2) \left\{ \lambda \left[\lambda + \left(\nu_{\rm b} + \frac{4}{3}\nu\right)k^2 \right] - 2\pi G\Sigma k + v_{\rm s}^2 k^2 \right\} + \lambda \Omega^2 + 3\beta \Omega^2 \nu k^2 = 0,$$

giving the growth rate λ of axisymmetric waves in terms of their wavenumber $k = |k_x|$, where v_s is the adiabatic sound speed and

$$\beta = \frac{d\ln(\nu\Sigma)}{d\ln\Sigma}$$

(d) First simplify the dispersion relation in the case of an inviscid disc. Show that such a disc is unstable to axisymmetric modes when

$$Q = \frac{v_{\rm s}\Omega}{\pi G\Sigma} < 1 \,. \label{eq:Q}$$

[QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 321

(e) Now consider the case of a viscous disc, in which different modes of instability are possible. You may assume that a necessary condition for the roots of the real cubic equation

$$\lambda^3 + a\lambda^2 + b\lambda + c = 0$$

all to have $\operatorname{Re}(\lambda) \leq 0$ is that $c \geq 0$. Deduce that a viscous disc is unstable in the limit $k \to 0$ in the case $\beta < 0$. How is this result related to an analysis of the diffusion equation for the viscous evolution of a Keplerian disc? If instead $\beta > 0$, show that the disc is unstable if

$$3\beta\Omega^2 - 2\pi G\Sigma k + v_{\rm s}^2 k^2 < 0$$

for some k > 0, and show further that this occurs when

$$Q < \frac{1}{\sqrt{3\beta}} \,.$$

 $\mathbf{2}$

Consider the gravitational interaction of a disc with a massive satellite in the local approximation. The equations of 2D gas dynamics for an ideal, non-self-gravitating disc are

$$\frac{\partial \Sigma}{\partial t} + \boldsymbol{\nabla} \cdot (\Sigma \mathbf{u}) = 0$$

and

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla} \mathbf{u} + 2\boldsymbol{\Omega} \times \mathbf{u} = -\boldsymbol{\nabla} \Phi_{\mathrm{t,m}} - \boldsymbol{\nabla} \Psi - \frac{1}{\Sigma} \boldsymbol{\nabla} P \,,$$

where $\Phi_{t,m} = -\Omega S x^2$ is the tidal potential in the midplane and $\Psi(x, y, t)$ is the gravitational potential due to the satellite. Assume that the two-dimensional pressure is given by a barotropic relation $P = P(\Sigma)$. In the absence of the satellite potential, the basic state is a uniform disc with the orbital shear flow $\mathbf{u} = -Sx \, \mathbf{e}_y$.

(a) Derive the linearized equations

$$\begin{split} \frac{D\Sigma'}{Dt} &= -\Sigma \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right) \,, \\ \frac{Dv_x}{Dt} - 2\Omega v_y &= -\frac{\partial \Psi}{\partial x} - \frac{v_s^2}{\Sigma} \frac{\partial \Sigma'}{\partial x} \,, \\ \frac{Dv_y}{Dt} + (2\Omega - S)v_x &= -\frac{\partial \Psi}{\partial y} - \frac{v_s^2}{\Sigma} \frac{\partial \Sigma'}{\partial y} \end{split}$$

for the disturbance generated by the satellite, where Σ' and \mathbf{v} are the perturbations of surface density and velocity, v_s is the adiabatic sound speed and

$$\frac{D}{Dt} = \frac{\partial}{\partial t} - Sx\frac{\partial}{\partial y}.$$

(b) Show that the quantity

$$f' = \frac{1}{\Sigma} \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) - (2\Omega - S) \frac{\Sigma'}{\Sigma^2}$$

satisfies Df'/Dt = 0, and give a physical interpretation of this result.

[QUESTION CONTINUES ON THE NEXT PAGE]

(c) When the initial conditions are such that f' vanishes, you may assume that the equations of part (a) can be combined into the form

$$\left(\frac{D^2}{Dt^2} + \Omega_r^2 - v_s^2 \nabla^2\right) v_y = (2\Omega - S) \frac{\partial \Psi}{\partial x} - \frac{D}{Dt} \frac{\partial \Psi}{\partial y} \,. \tag{\dagger}$$

where Ω_r is the radial (epicyclic) frequency. [You are *not* required to derive (†).] When the disc is unforced ($\Psi = 0$), show that there are solutions of (†) in the form of shearing density waves,

$$v_y = \operatorname{Re}\left[\tilde{v}_y(t) e^{i\mathbf{k}(t)\cdot\mathbf{x}}\right],$$

provided that the wavevector $\mathbf{k}(t)$ evolves in time in a way that you should determine, and provided that $\tilde{v}_y(t)$ satisfies the ordinary differential equation (ODE)

$$\frac{d^2 \tilde{v}_y}{dt^2} + g(t) \tilde{v}_y = 0, \qquad (\ddagger)$$

where g(t) is a function that you should determine explicitly.

(d) When the disc is forced by a satellite on a circular orbit, explain why the potential Ψ can be assumed to be independent of time.

Consider a single Fourier component $\Psi = \psi(x) \exp(ik_y y)$ of the satellite potential, and assume that the disc's response to this is also of the form $v_y = v(x) \exp(ik_y y)$. From (†), derive an ODE for v(x) describing the radial structure of the density waves forced by the satellite. [You are *not* required to work out the form of $\psi(x)$.]

- (e) Without solving the equation, show that the homogeneous (unforced) version of the ODE in part (d) has an oscillatory character for sufficiently large |x|, and show that the orbital motion of the disc relative to the satellite is supersonic in the oscillatory regions.
- (f) Take the Fourier transform of the ODE in part (d) with respect to x and derive an ODE for $\tilde{v}(k_x)$, where

$$\tilde{v}(k_x) = \int_{-\infty}^{\infty} v(x) e^{-ik_x x} dx.$$

Comment on the relation of this ODE to (‡), bearing in mind the time-dependence of the shearing wavevector in part (c).

[*Hint:* For suitably well-behaved u(x),

$$\int_{-\infty}^{\infty} x u(x) e^{-ik_x x} dx = i \frac{d}{dk_x} \int_{-\infty}^{\infty} u(x) e^{-ik_x x} dx .$$

3

- (a) Derive an expression for the angular frequency Ω_z of small vertical oscillations about a circular orbit in the midplane of an axisymmetric potential $\Phi(r, z)$ with reflectional symmetry. Show that Ω_z is equal to the orbital frequency in the case of a spherically symmetric potential, and explain the reason for this.
- (b) A non-self-gravitating perfect gas in the local model of an astrophysical disc satisfies the three-dimensional equations

$$\begin{split} \frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{u} &= 0 \,, \\ \frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{u} &= 0 \,, \\ \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + 2 \mathbf{\Omega} \times \mathbf{u} &= -\nabla \Phi_{\mathrm{t}} - \frac{1}{\rho} \nabla p \end{split}$$

where γ is the adiabatic exponent and $\Phi_{\rm t} = -\Omega S x^2 + \frac{1}{2} \Omega_z^2 z^2$ is the tidal potential. For a steady solution $\mathbf{u} = -S x \, \mathbf{e}_y$, $\rho = \rho(z)$, p = p(z), derive the equation of vertical hydrostatic equilibrium and show that the surface density Σ and the vertically integrated pressure P are related by $P = \Sigma H^2 \Omega_z^2$, if the scaleheight H is defined such that H^2 is the mass-weighted average of z^2 .

(c) Using P, Σ and H as natural units, explain how to express the hydrostatic vertical structure in a dimensionless form using dimensionless variables (denoted by $\tilde{}$) that satisfy the equation

$$\frac{d\tilde{p}}{d\tilde{z}} = -\tilde{\rho}\tilde{z}$$

and the normalization conditions

$$\int \tilde{\rho} \, d\tilde{z} = \int \tilde{p} \, d\tilde{z} = 1 \,,$$

where the integrals are over the full vertical extent of the disc. Give one explicit example of a solution of this dimensionless problem.

(d) Show that the vertical motion of a dust grain, subject to gas drag with a constant stopping time τ , in a gas disc that is in vertical hydrostatic equilibrium is similar to a damped harmonic oscillator. Describe the motion of the grain qualitatively.

[QUESTION CONTINUES ON THE NEXT PAGE]

(e) Now consider a dynamical situation in which the gas disc is undergoing a uniform expansion or contraction in the vertical direction, such that the scaleheight is H(t) and (apart from the orbital shear flow) the motion is independent of x and y. Let $\zeta = z/H(t)$ be a Lagrangian variable that is constant following the motion of the gas (i.e. $D\zeta/Dt = 0$). Verify that the equations of gas dynamics are satisfied when

$$\rho = \frac{\Sigma}{H(t)} \,\tilde{\rho}(\zeta) \,, \qquad p = \frac{P(t)}{H(t)} \,\tilde{p}(\zeta) \,, \qquad \mathbf{u} = -Sx \,\mathbf{e}_y + \frac{dH}{dt} \,\zeta \,\mathbf{e}_z$$

(where $\tilde{\rho}$ and \tilde{p} are the same dimensionless functions as in the hydrostatic solution in part (c), but with \tilde{z} replaced by ζ), provided that H(t) and P(t) satisfy

$$\frac{d^2H}{dt^2} + \Omega_z^2 H = \frac{P}{\Sigma H} = C H^{-\gamma} \,,$$

where C and Σ are constants.

(f) Hence obtain an expression, in terms of γ and Ω_z , for the angular frequency of small oscillations of the scaleheight H about its equilibrium value.

END OF PAPER