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(a) Let X be a Banach space with norm ‖ · ‖. State the Hille-Yosida theorem for C0

semigroups {U}t>0 which obey the bound ‖U(t)u‖ 6 Meωt‖u‖ ∀u ∈ X. Include in
your answer a definition of the generator A ∈ G(M,ω), and of its domain, and give
the precise characterization of the set of generators of such semigroups.

(b) Prove that the domain Dom (A) is a dense subspace of X.

(c) Consider the initial value problem (for real-valued u = u(t, x)):

utt − uxx + u = 0 u(0, x) = u0(x) , ut(0, x) = u1(x) , (1)

with periodic boundary conditions u(t, x + 2π) = u(t, x). Formulate (1) as an
abstract evolution equation Ż = AZ in the form

∂t

(
u
v

)
=

(
0 1
−B2 0

) (
u
v

)
= A

(
u
v

)
(2)

on the Hilbert space H of pairs Z = (u, v) of 2π-periodic L2 functions with

‖Z‖2H = ‖(u, v)‖2H =

∫ +π

−π
u2x + u2 + v2 dx < +∞ .

Using Fourier series, or otherwise, describe H precisely and specify the domain of
A in your formulation.

(d) State the Lumer-Phillips theorem, and hence verify that your answer to (c) gives
rise to a one-parameter unitary group U on H.

(e) Let f = f(t, x) = f(t, x + 2π) be a given real-valued function. Write the
inhomogeneous initial value problem

utt − uxx + u = f u(0, x) = u0(x) , ut(0, x) = u1(x) , (3)

in first order form Ż = AZ + F , Z(0) = Z0 , where you should specify how Z0, F
are determined by u0, u1, f . Hence formulate a notion of mild solution for the initial
value problem as an integral equation

Z(t) = U(t)Z0 +

∫ t

0
U(t− s)F (s) ds . (4)

Show that if s 7→ F (s) ∈ H and s 7→ AF (s) ∈ H are continuous for s > 0, then
Z ∈ C1([0,∞);H) and

‖Z(t)‖2H 6 ‖Z(0)‖2H + 2

∫ t

0
|(Z(s), F (s))H|ds .

(f) For the nonlinear initial value problem

utt − uxx + u = u2 u(0, x) = u0(x) , ut(0, x) = u1(x) , (5)

prove, using the contraction mapping theorem or otherwise, that given Z(0) =
(u0, u1) ∈ H there is a mild solution t 7→ Z(t) to (5) for t ∈ [0, T ], stating exactly
what you mean by this. Explain whether or not the solution (i) will be differentiable,
and (ii) will exist for all time i.e. for t ∈ [0,+∞).
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