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Consider a spherically symmetric star of total mass M and radius R. Assume that energy
transport is by radiative diffusion in a perfect gas. The mean molecular weight µ is
uniform. Radiation pressure can be neglected.

Write down the equations of stellar structure for the above specified star.

Assume that the density distribution %(r) in this star is given by

% = %c
(
1 − r

R

)
,

where %c is the central density of the star and r is the distance from the centre of the star.

(i) Find mr the mass within radius r, the pressure P (r) and the temperature T (r)
at radius r. Find the central density %c, the central pressure Pc and the central
temperature Tc in terms of R and M .

(ii) Assume now that all the energy is generated at the centre of the star, so that the
luminosity at radius r, Lr = L = const outside a very small region near r = 0.

Consider the star’s structure and use the appropriate stellar structure equation at
r = 0.5R to derive an expression for the luminosity L in terms of M and R for two
types of opacity that might be dominant in the star’s material.

First, assume that Kramer’s opacity is dominant in the stellar material and derive

L = L(M,R) = CKM
αRβ .

Determine α and β and find an expression for CK.

Secondly, find L = L(M,R) = CesM
δ Rγ for the case when electron-scattering

opacity is dominant. Determine δ, γ and Ces.

Your results should show that for electron-scattering opacity, the luminosity L
is independent of the radius R and increases with mass M less steeply than for
Kramer’s opacity.
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Consider a spherically symmetric star in radiative equilibrium. The equation of state is
given by a mixture of a perfect gas and radiation, so the pressure P = Pg + Prad. The
mean molecular weight µ for this star decreases inwards according to the law

µ = µ1 T (r)−s

where T (r) is the temperature of stellar material, r is the distance from the centre of the
star, s is a non negative constant and µ1 is a positive constant.

Let % be the density of stellar material, mr be the mass within radius r, M the total mass,
Lr the star’s luminosity at radius r, L the surface luminosity and β = Pg/P .

(i) Show that such a star can be a polytrope with P = K %1+
1
n . Find K = K(β) and

the polytropic index n for this star.

What is a sufficient condition on β for the star to be a polytrope?

Show that the opacity κ for this star is

κ η = 4πcG(1− β)
M

L
, where η =

Lr

mr

M

L
.

(ii) Derive the Lane-Emden equation for polytropes of index n using the standard
polytropic dimensionless variables θ and ξ, where

% = λ θn and r = α ξ,

specifying λ and α. Describe the boundary conditions.

Find the mass interior to ξ and the total mass of this configuration.

(iii) Assume now that s = 0 so the star described above is chemically uniform. Assume
that κ is given by Kramer’s opacity and η = const. Using properties of polytropes,
show that for the considered star

L ∝ β7.5M11/2R−1/2 .
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Consider a fully convective star composed of a perfect gas with uniform mean molecular
weight µ. Assume that the surface opacity is given by κ = κ0 T

19/2, where the surface is
defined at an optical depth τ = 2

3 .

(i) Show that the Hayashi track for this star is such that

L ∝M6 T−44
eff ,

where L is the star’s luminosity, M is the total mass and Teff is effective temperature.

(ii) Suppose that this star is powered by matter settling on to it at a constant rate Ṁ
creating an accretion luminosity Lacc = GM Ṁ/R. Show that the track the star
follows on the H–R diagram obeys

L ∝ Ṁ
3
4 T 7

eff .

(iii) Suppose now that deuterium burning also occurs and that it may be approximated
by

ε = ε0 % T
15,

where ε is the energy generation rate per unit mass, ε0 is a constant, % is the
density of stellar material and T its temperature. Assume that nuclear energy
generation from the deuterium burning Lnuc is much smaller than the accretion
energy generation Lacc and show that

Lnuc

Lacc
∝M13 Ṁ−7.

Considering the above expressions for L and
Lnuc

Lacc
deduce that deuterium burning

luminosity exceeds the accretion luminosity for some

L > L0 ∝ T d
eff , where d =

964

43
.
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(i) Derive the Ledoux and Schwarzschild criteria for convective stability.

(ii) Consider a mixture of a perfect gas with pressure Pg and radiation with pressure
Prad. The total pressure of this mixture is P = Pg + Prad at temperature T .

Let ∇ad =

(
∂ log T

∂ logP

)

ad

be the adiabatic gradient and ∇rad =

(
∂ log T

∂ logP

)

rad

be the

gradient within the stellar material for radiative transport of energy.

Find ∇ad(β) , where β =
Pg

P
, for this mixture. Determine ∇ad as β → 1.

(iii) A star is composed of a perfect gas and radiation pressure can be neglected. The
star has a convective core. The opacity of the stellar matter is κ = κ0 %

a T−b and
the energy generation per unit mass is ε = ε0 % T

η, κ0, ε0, a, b and η are constants.

Show that if close to the centre % ∝ %c (1 − λ r2), where λ is a positive constant,
then

L ∝ r3
[
1− 3

5

(
2 +

2

3
η

)
λ r2

]
.

Find an expression for ∇rad close to the centre using expansions of Lr, mr and
T obtained with the above form of % close to the centre, in the form ∇rad =
∇rad,c (1 − Ar2) giving A in terms of λ, a, b and η where ∇rad,c need not be
determined.

What condition on ∇rad c is necessary for a convective core?
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