MAMA/317, NST3AS/317, MAAS/317

MAT3 MATHEMATICAL TRIPOS Part III

Thursday, 1 June, 2023 $\quad 1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 317

STRUCTURE AND EVOLUTION OF STARS

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1

Consider a spherically symmetric star of total mass M and radius R. Assume that energy transport is by radiative diffusion in a perfect gas. The mean molecular weight μ is uniform. Radiation pressure can be neglected.

Write down the equations of stellar structure for the above specified star.

Assume that the density distribution $\rho(r)$ in this star is given by

$$\varrho = \varrho_{\rm c} \left(1 - \frac{r}{R} \right),$$

where $\rho_{\rm c}$ is the central density of the star and r is the distance from the centre of the star.

- (i) Find m_r the mass within radius r, the pressure P(r) and the temperature T(r) at radius r. Find the central density ρ_c , the central pressure P_c and the central temperature T_c in terms of R and M.
- (ii) Assume now that all the energy is generated at the centre of the star, so that the luminosity at radius r, $L_r = L = \text{const}$ outside a very small region near r = 0. Consider the star's structure and use the appropriate stellar structure equation at r = 0.5 R to derive an expression for the luminosity L in terms of M and R for two

types of opacity that might be dominant in the star's material.

First, assume that Kramer's opacity is dominant in the stellar material and derive

$$L = L(M, R) = C_{\mathrm{K}} M^{\alpha} R^{\beta}.$$

Determine α and β and find an expression for $C_{\rm K}$.

Secondly, find $L = L(M, R) = C_{\rm es} M^{\delta} R^{\gamma}$ for the case when electron-scattering opacity is dominant. Determine δ , γ and $C_{\rm es}$.

Your results should show that for electron-scattering opacity, the luminosity L is independent of the radius R and increases with mass M less steeply than for Kramer's opacity.

 $\mathbf{2}$

Consider a spherically symmetric star in radiative equilibrium. The equation of state is given by a mixture of a perfect gas and radiation, so the pressure $P = P_{\rm g} + P_{\rm rad}$. The mean molecular weight μ for this star decreases inwards according to the law

$$\mu = \mu_1 T(r)^{-s}$$

where T(r) is the temperature of stellar material, r is the distance from the centre of the star, s is a non negative constant and μ_1 is a positive constant.

Let ρ be the density of stellar material, m_r be the mass within radius r, M the total mass, L_r the star's luminosity at radius r, L the surface luminosity and $\beta = P_g/P$.

(i) Show that such a star can be a polytrope with $P = K \varrho^{1+\frac{1}{n}}$. Find $K = K(\beta)$ and the polytropic index n for this star.

What is a sufficient condition on β for the star to be a polytrope?

Show that the opacity κ for this star is

$$\kappa \eta = 4\pi c G(1-\beta) \frac{M}{L}$$
, where $\eta = \frac{L_r}{m_r} \frac{M}{L}$.

(ii) Derive the Lane-Emden equation for polytropes of index n using the standard polytropic dimensionless variables θ and ξ , where

$$\varrho = \lambda \, \theta^n \quad \text{and} \quad r = \alpha \, \xi,$$

specifying λ and α . Describe the boundary conditions. Find the mass interior to ξ and the total mass of this configuration.

(iii) Assume now that s = 0 so the star described above is chemically uniform. Assume that κ is given by Kramer's opacity and $\eta = const$. Using properties of polytropes, show that for the considered star

$$L \propto \beta^{7.5} M^{11/2} R^{-1/2}.$$

3

Consider a fully convective star composed of a perfect gas with uniform mean molecular weight μ . Assume that the surface opacity is given by $\kappa = \kappa_0 T^{19/2}$, where the surface is defined at an optical depth $\tau = \frac{2}{3}$.

(i) Show that the Hayashi track for this star is such that

$$L \propto M^6 T_{\text{eff}}^{-44},$$

where L is the star's luminosity, M is the total mass and $T_{\rm eff}$ is effective temperature.

(ii) Suppose that this star is powered by matter settling on to it at a constant rate M creating an accretion luminosity $L_{\rm acc} = G M \dot{M}/R$. Show that the track the star follows on the H–R diagram obeys

$$L \propto \dot{M}^{\frac{3}{4}} T_{\text{eff}}^7$$
.

(iii) Suppose now that deuterium burning also occurs and that it may be approximated by

$$\epsilon = \epsilon_0 \, \varrho \, T^{15},$$

where ϵ is the energy generation rate per unit mass, ϵ_0 is a constant, ρ is the density of stellar material and T its temperature. Assume that nuclear energy generation from the deuterium burning L_{nuc} is much smaller than the accretion energy generation L_{acc} and show that

$$\frac{L_{\rm nuc}}{L_{\rm acc}} \propto M^{13} \, \dot{M}^{-7}.$$

Considering the above expressions for L and $\frac{L_{\text{nuc}}}{L_{\text{acc}}}$ deduce that deuterium burning luminosity exceeds the accretion luminosity for some

$$L > L_0 \propto T_{\text{eff}}^{\text{d}}$$
, where $d = \frac{964}{43}$.

 $\mathbf{4}$

- (i) Derive the Ledoux and Schwarzschild criteria for convective stability.
- (ii) Consider a mixture of a perfect gas with pressure $P_{\rm g}$ and radiation with pressure $P_{\rm rad}$. The total pressure of this mixture is $P = P_{\rm g} + P_{\rm rad}$ at temperature T.

5

Let $\nabla_{\rm ad} = \left(\frac{\partial \log T}{\partial \log P}\right)_{\rm ad}$ be the adiabatic gradient and $\nabla_{\rm rad} = \left(\frac{\partial \log T}{\partial \log P}\right)_{\rm rad}$ be the gradient within the stellar material for radiative transport of energy.

Find $\nabla_{\mathrm{ad}}(\beta)$, where $\beta = \frac{P_{\mathrm{g}}}{P}$, for this mixture. Determine ∇_{ad} as $\beta \to 1$.

(iii) A star is composed of a perfect gas and radiation pressure can be neglected. The star has a convective core. The opacity of the stellar matter is $\kappa = \kappa_0 \rho^a T^{-b}$ and the energy generation per unit mass is $\epsilon = \epsilon_0 \rho T^{\eta}$, κ_0 , ϵ_0 , a, b and η are constants. Show that if close to the centre $\rho \propto \rho_c (1 - \lambda r^2)$, where λ is a positive constant, then

$$L \propto r^3 \left[1 - \frac{3}{5} \left(2 + \frac{2}{3} \eta \right) \lambda r^2 \right].$$

Find an expression for ∇_{rad} close to the centre using expansions of L_r , m_r and T obtained with the above form of ρ close to the centre, in the form $\nabla_{\text{rad}} = \nabla_{\text{rad,c}} (1 - A r^2)$ giving A in terms of λ , a, b and η where $\nabla_{\text{rad,c}}$ need not be determined.

What condition on $\nabla_{\text{rad c}}$ is necessary for a convective core?

END OF PAPER