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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+∇ · (ρu) = 0,

∂p
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+ u · ∇p+ γp∇ · u = 0, (1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
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∂B
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= ∇× (u×B) , ∇2Φ = 4πGρ. (3)

Conservation laws for momentum and energy
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where h is the enthalpy obeying dh = T ds + ρ−1dp; h = c2s/(γ − 1) for a polytropic gas
with adiabatic index γ, where cs is the speed of sound.

You may assume that for any scalar function f

∇f =
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∂R
eR +

1

R

∂f

∂φ
eφ +
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ez (cylindrical coordinates) (6)

∇f =
∂f
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eφ (spherical coordinates). (7)

You may assume that for any vectors C and D

(∇×C)×C = (C · ∇)C− 1

2
∇
(
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)
, (8)

∇× (C×D) = C(∇ ·D) + (D · ∇)C−D(∇ ·C)− (C · ∇)D, (9)

∇ · (C×D) = D · (∇×C)−C · (∇×D). (10)

and in cylindrical coordinates
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, (11)
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(C · ∇)C =

[
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φ

R

]
eR +

[
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CRCφ
R

]
eφ + [(C · ∇)Cz] ez. (13)

Equation y′′ + x−1y′ + y = 0 has a solution y(x) = y0J0(x), where J0(x) is a Bessel
function of order 0 and y0 = y(0) is a constant. Function J0(x) has infinite number of
positive roots, the smallest of them is x1 ≈ 2.4, at which J ′0(x1) ≈ −0.52; also J0(0) = 1,
J ′0(0) = 0.

You may refer to these formulae in your solutions, but, please, make sure to provide
sufficient details when using them.
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A radio pulsar is a rapidly spinning neutron star (of radius R?) possessing a strong
magnetic field. Let the neutron star spin vector be Ω. Its magnetic field B0(r) is produced
by currents running only inside the star (r < R?). Outside the neutron star there is
plasma that rotates with the same angular speed Ω as the star and forms the co-rotating
magnetosphere of the radio pulsar.

(a) Working under the assumption of ideal, non-relativistic MHD and assuming B0(r) to
be the only magnetic field present, determine the spatial density of electric charges nq(r)
outside the neutron star in the inertial frame (the final expression for nq(r) should contain
no differential operators).

(b) Assume now that a neutron star can be modelled as an aligned dipole, i.e. its magnetic
field for r > R? is

B0(r) = 3
(µ · r)r

r5
− µ

r3
,

with the magnetic moment µ parallel to Ω.

(i) Assuming the charges outside the neutron star to be orbiting around it with the
angular speed Ω and adopting spherical coordinates (r, θ, φ) aligned with Ω, determine
the corresponding current density as a function of r and θ for r > R?.

(ii) This current outside the neutron star generates its own (induced) magnetic field
Bi(r). Using dimensional arguments and focusing on the midplane (θ = π/2) of the aligned
dipole magnetosphere determine the characteristic distance Re at which the strength of
the induced field becomes comparable to the strength of the original field B0(r). Provide
a physical interpretation of Re and argue that the assumption of an ideal, non-relativistic
MHD should become invalid at this distance.

(iii) Consider a field line of the original vacuum field B0(r) that crosses the midplane
(θ = π/2) at the radius Re. Determine the co-latitude θ? of this field line at the neutron
star surface (i.e. at r = R?) as one follows this field line back towards the origin.

Part III, Paper 314 [TURN OVER]



4

2

A region in the Galaxy contains gas with uniform density ρ0 and uniform magnetic
field B0. Part of this region starts to collapse under its own gravity in an axisymmetric
fashion in the direction perpendicular to B0, eventually forming a gaseous filament aligned
with B0; the rest of the gas gets expelled from the vicinity of the filament. The filament
can be considered as a static, non-rotating, axisymmetric and infinitely long structure,
supported by the balance of its own gravity, pressure and magnetic stresses. The equation
of state of the gas comprising the filament is P = Kρ2, where P and ρ are gas pressure
and density and K is a constant. Adopt cylindrical (R,φ, z) coordinates (aligned with
B0) to describe the filament.

(a) Assume first that no toroidal magnetic field (in the φ-direction) gets generated in the
process of collapse.

(i) Derive a single second-order differential equation describing the density distri-
bution ρ(R) inside the filament. Solve this equation and obtain ρ(R), provided that the
central density is ρ(0) = ρ1.

(ii) Show that the filament has a finite radial extent and determine the radius of
the filament (with all relevant constant factors).

(iii) Determine the mass per unit length (along B0) of the filament (with all relevant
constant factors).

(b) Assume now that in the process of collapse an axisymmetric toroidal field Bφ
(independent of z) gets generated in the filament, modifying its structure compared to
part (a) such that the density distribution in the filament is given by

ρ(R) = ρ1e
−R2/L2

,

where ρ1, L are constants. Determine the behavior of Bφ(R) assuming a magnetostatic
equilibrium. By exploring the behavior of this solution for R → 0 and R → ∞, find the
condition that L must satisfy for this solution to be meaningful.
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Consider the following model of a steady, spherically-symmetric wind launched from
the surface of a star with mass M? and radius R?. Gas is heated and rapidly accelerated at
the stellar surface so that at r = R? its sound speed is cs,0 and radial velocity is u0 6 cs,0.
This drives the gas outflow from the potential well of the star. The outflow undergoes
a smooth transonic transition at the sonic radius rs and expands to infinity. The gas is
isentropic with adiabatic index γ > 1.

(a) Derive the equation setting the condition for a smooth passage of the flow
through the sonic point and state this condition.

(b) Let us introduce α = c2s,0/ (GM?/R?) and M0 = u0/cs,0, the Mach number of
the flow at r = R?. Derive the equation that relates M0 and α demonstrating that for a
transonic flow u0 and M0(α, γ) are not arbitrary but are set by α. Determine the range
of γ for which the transonic flow is possible, in principle.

(c) Use the equation derived in part (b) to show that for α = 1/2 the flow admits a
marginally transonic solution, i.e. a solution with a sonic point at r = R?. How does this
result depend on γ? Are there other values of α for which M0 = 1 is possible?

(d) Use the equation derived in part (b) to show that for a transonic solution there
are two values of α that correspond to any given M0 < 1. Determine the behavior of
M0(α, γ) in the limit of a very hot outflow, when α→ ∞.
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A supernova explosion drives a strong, spherically symmetric shock wave into the
surrounding interstellar medium. Because of the cooling processes operating inside the
shocked medium, the radius of the shock R(t) evolves as

R(t) = Ct1/3,

while the velocity inside the shock behaves as

u(R, t) = ups(t)
r

R(t)
,

where ups(t) is the post-shock gas velocity, i.e. ups(t) = u(r → R(t), t). The gas into
which the shock propagates can be considered as cold and having a constant density ρ0;
the adiabatic index of the gas is γ.

(a) Derive the post-shock values of the gas density ρps(t) = ρ(r → R(t), t), pressure
pps(t) = p(r → R(t), t), and velocity ups(t) = u(r → R(t), t), assuming the shock to be
strong and passage of the gas through the shock to be adiabatic.

(b) Determine the pressure at the centre of the sphere p(0, t) for γ = 5/3.

(c) Suppose now that the medium into which the shock runs is pervaded by a
uniform magnetic field B0, which is too weak to affect the force balance and the fluid
motion. Working in a spherical coordinate system (r, θ, φ) aligned with B0, write down the
post-shock magnetic field Bps(t) = B(r → R(t), t) in spherical coordinates for arbitrary
γ.

(d) Determine the behaviour of the post-shock Alfven speed vA(r → R(t), t)/vA,0

as a function of spherical coordinates (for arbitrary γ), where vA,0 is the Alfven speed in
the ambient medium. Find the highest value of this ratio.

END OF PAPER
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