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1 Let φ : RD+1 → R. Define the term soliton in the context of scalar Lagrangian
field theory. Consider the Lagrangian

L =

∫

RD

(1

2
(∂tφ)2 − 1

2
|∇φ|2 − κ2|∇φ|4 − U(φ)

)
dDx

where κ is a constant and U(φ) > 0. Use the Derrick scaling argument to find the range
of spatial dimensions D where solitons cannot exist.

Assume that κ = 0, D = 1 and

U(φ) = φ6 − 8φ4 + 16φ2.

Sketch the potential and explain why there are no kink solutions connecting the vacua φ−
and φ+ if φ− < 0 and φ+ > 0.

Find a kink solution, and compute its mass.

2 The Bogomolny equations for the Abelian Higgs model on R2 with the flat metric
g = dx2 + dy2 are

B =
1

2
(1− |φ|2), (Dx + iDy)φ = 0, (1)

where φ is a complex scalar field, B is the magnetic field of the Abelian gauge potential
A, and D = d− iA.

Derive the Taubes equation for a scalar function u on R2 \ {0} such that |φ|2 = eu.
State the boundary conditions corresponding to a vortex solution where φ has a single
zero of multiplicity N at the origin of R2.

Use the maximum principle to show that u 6 0 everywhere on R2.

Assume that u = u(r) depends only on the radial coordinate and find the constants
(α, γ, δ) such that near the origin u takes the form

u ∼ α ln r + β + γr + δr2 + . . . .

[The constant β need not be determined.]

Consider a conformally rescaled metric g̃ = eu(dx2 +dy2) where u solves the Taubes
equation on (R2, g), and assume that ũ is a solution of the Taubes equation on (R2, g̃) with
the vortex number Ñ . Show that u + ũ is a solution of the Taubes equation on (R2, g)
and find its vortex number.

[You can assume that the Bogomolny equations hold on (R2, g̃) with B = ∂xAy − ∂yAx,
and that the Laplacians of g̃ and g are related by ∆g̃ = e−u∆g.]
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3 Let g be a Euclidean metric on R4, and let vol be a volume form. Define the Hodge
?–operator of (R4, g, vol) and find an expression for ?2 on Λ2(R4).

Define a decomposition of Λ2(R4) into self-dual (SD) and anti-self-dual (ASD) two–
forms, and show that H ∧ G = 0 if H is SD and G is ASD. Use this, together with a
Bogomolny argument, to show that the SU(n) Yang–Mills action action on R4 is bounded
from below by a multiple of the second Chern number.

Let
g = dx · dx + dτ2

and let A be an su(2)–valued one–form on R4. Consider a gauge in which Aτ = 0 vanishes
to show that ASD Yang–Mills equations take the form

∂Ai
∂τ

=
1

2
εijkFjk, k = 1, 2, 3.

Find the Lax pair for the ASDYM in this gauge.
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