MAT3 MATHEMATICAL TRIPOS Part III

Tuesday, 6 June, 2023 $\,$ 9:00 am to 11:00 am $\,$

PAPER 313

SOLITONS, INSTANTONS AND GEOMETRY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $\phi : \mathbb{R}^{D+1} \to \mathbb{R}$. Define the term soliton in the context of scalar Lagrangian field theory. Consider the Lagrangian

$$L = \int_{\mathbb{R}^D} \left(\frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} |\nabla \phi|^2 - \kappa^2 |\nabla \phi|^4 - U(\phi) \right) d^D \mathbf{x}$$

where κ is a constant and $U(\phi) \ge 0$. Use the Derrick scaling argument to find the range of spatial dimensions D where solitons cannot exist.

Assume that $\kappa = 0, D = 1$ and

$$U(\phi) = \phi^6 - 8\phi^4 + 16\phi^2.$$

Sketch the potential and explain why there are no kink solutions connecting the vacua ϕ_{-} and ϕ_{+} if $\phi_{-} < 0$ and $\phi_{+} > 0$.

Find a kink solution, and compute its mass.

2 The Bogomolny equations for the Abelian Higgs model on \mathbb{R}^2 with the flat metric $g = dx^2 + dy^2$ are

$$B = \frac{1}{2}(1 - |\phi|^2), \quad (D_x + iD_y)\phi = 0, \tag{1}$$

where ϕ is a complex scalar field, B is the magnetic field of the Abelian gauge potential A, and D = d - iA.

Derive the Taubes equation for a scalar function u on $\mathbb{R}^2 \setminus \{0\}$ such that $|\phi|^2 = e^u$. State the boundary conditions corresponding to a vortex solution where ϕ has a single zero of multiplicity N at the origin of \mathbb{R}^2 .

Use the maximum principle to show that $u \leq 0$ everywhere on \mathbb{R}^2 .

Assume that u = u(r) depends only on the radial coordinate and find the constants (α, γ, δ) such that near the origin u takes the form

$$u \sim \alpha \ln r + \beta + \gamma r + \delta r^2 + \dots$$

[The constant β need not be determined.]

Consider a conformally rescaled metric $\tilde{g} = e^u(dx^2 + dy^2)$ where u solves the Taubes equation on (\mathbb{R}^2, g) , and assume that \tilde{u} is a solution of the Taubes equation on $(\mathbb{R}^2, \tilde{g})$ with the vortex number \tilde{N} . Show that $u + \tilde{u}$ is a solution of the Taubes equation on (\mathbb{R}^2, g) and find its vortex number.

[You can assume that the Bogomolny equations hold on $(\mathbb{R}^2, \tilde{g})$ with $B = \partial_x A_y - \partial_y A_x$, and that the Laplacians of \tilde{g} and g are related by $\Delta_{\tilde{g}} = e^{-u} \Delta_g$.]

UNIVERSITY OF

3

3 Let g be a Euclidean metric on \mathbb{R}^4 , and let *vol* be a volume form. Define the Hodge \star -operator of (\mathbb{R}^4, g, vol) and find an expression for \star^2 on $\Lambda^2(\mathbb{R}^4)$.

Define a decomposition of $\Lambda^2(\mathbb{R}^4)$ into self-dual (SD) and anti-self-dual (ASD) twoforms, and show that $H \wedge G = 0$ if H is SD and G is ASD. Use this, together with a Bogomolny argument, to show that the SU(n) Yang–Mills action action on \mathbb{R}^4 is bounded from below by a multiple of the second Chern number.

Let

 $g = d\mathbf{x} \cdot d\mathbf{x} + d\tau^2$

and let A be an $\mathfrak{su}(2)$ -valued one-form on \mathbb{R}^4 . Consider a gauge in which $A_{\tau} = 0$ vanishes to show that ASD Yang-Mills equations take the form

$$\frac{\partial A_i}{\partial \tau} = \frac{1}{2} \epsilon_{ijk} F_{jk}, \quad k = 1, 2, 3.$$

Find the Lax pair for the ASDYM in this gauge.

END OF PAPER