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Here you will compute the trispectrum induced by

Hint =

∫
d3x a4λεijkφ1 (∂iφ2) (∂jφ3) (∂kφ4) ,

where φ1,2,3,4 are four distinct massless scalars with de Sitter mode functions

f(k, τ) =
H√
2k3

(1 + ikτ) e−ikτ .

(i) Under a parity transformation (point inversion) a scalar field transforms as

φ(k)→ φ′(k) = Pφ(k)P = φ(−k) ,

with P the parity operator. Compute PHintP and use it to derive

〈[Hint,
n∏

a

φa(ka)]〉 = 2 Re〈Hint

n∏

a

φa(ka)〉 .

(ii) Then, use the in-in formalism to derive a time integral expression for 〈∏n
a φa(ka)〉

to linear order in λ.

(iii) Via an appropriate contour rotation or otherwise, show that the following integral
is purely imaginary for any integer p > 0,

∫ 0

−∞(1−iε)
dτ e−ikT τ (iτ)p ,

(iv) Hence, compute the final late time trispectrum using that

∫ τ0

−∞(1−iε)

dτ

τ
e−ikT τ → γE + ln(|kT τ0|)− i

π

2
as τ0 → 0 ,

where γE is Euler’s constant.

(v) Prove non-perturbatively at the level of correlators that the power spectrum and
bispectrum of φ are always parity even. Moreover, show that any parity-odd
interaction of three scalars in the action vanishes if fields vanish at spatial infinity.

Part III, Paper 312



3

2

Derive the soft-graviton theorem for the scalar-scalar-graviton bispectrum as follows.

(i) Let the metric be

ds2 = a2
[
−dη2 + (δij + γij)dx

idxj
]
,

where

γij(x) =

∫

k
eik·x

∑

s

εsij(k)γs(k) , γs(k) = as,qfq(η) + a†s,qf
∗
q (η) ,

is the graviton field. Consider a large change of coordinates εµ = {0, ωijxj} with ωij
constant in time, symmetric and traceless. Working to first order in ωij and zeroth order
in γij and ϕ compute the resulting transformation

• ∆γij = −∇µεν −∇νεµ of the transverse-traceless graviton perturbations γij , and

• ∆ϕ = −εµ∇µϕ of a canonical massless scalar with vanishing expectation value.

[Hint: use a symmetry argument to show that the relevant Christoffel symbols vanish.]

(ii) Define the following charge operator,

QS = −2ωij

∫
d3xΠij(x) ,

where Πij is the momentum conjugate of the graviton,

Πij(x, η) =

∫

q
eix·q

∑

s

εsij(q)Πs(q) , Πs(q) = as,qgq(η) + a†s,qg
∗
q (η) .

Using that 2
∑

s ε
s
ij(0)εsmn(−0) ' δimδjn+δinδjm−δijδmn check that QS induces the gauge

transformation ∆γij you computed in (i).

(iii) Consider the Ward-Takahashi identity

i〈[QS , ϕ(k1)ϕ(k2)]〉 = 〈∆ (ϕ(k1)ϕ(k2))〉 . (1)

On the left-hand side, trade the commutator for an appropriate imaginary part and
then, using that Πij |0〉 ∝ γij |0〉, re-write the result so that it is proportional to the
soft bispectrum 〈ϕ(k1)ϕ(k2)γij(0)〉.
(iv) Compute the right-hand side of (1) and hence state the final result for the soft-graviton
theorem.
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(i) Derive the Boltzmann equation for freely propagating photons to linear order in
temperature perturbations Θ(η,k, p̂),

∂Θ

∂η
+ i (p̂ · k) Θ− d ln ε

dη
= 0 . (1)

(ii) Starting from Eq. (1) derive the continuity and Euler equations for the Legendre
multipoles

Θl(η,k) ≡ il
∫
dµ

2
Pl(µ)Θ(η,k, µ = k̂ · p̂) . (2)

[Hint: You may use that P0(x) = 1, P1(x) = x and P2(x) = (3x2 − 1)/2]

(iii) To first order in perturbations the geodesic equation gives

d ln ε

dη
= −dΨ

dη
+
(
Φ′ + Ψ′) .

Assuming that the Newtonian potentials are homogeneous and equal to each other, but
change from time ηi to time ηf > ηi, compute Θ(ηf ,x0, p̂) from Eq. (1) using the line of
sight solution in terms of an appropriate initial condition to be specified. Discuss what
contributions to the CMB angular power spectrum are captured by this calculation.

4

Consider the equations of standard perturbation theory for collisionless dark matter,

δ′ +∇ · [(1 + δ)v] = 0 , v′i +Hvi + (v · ∇) vi = −∇iφ , ∇2φ =
3

2
H2Ωmδ . (1)

where a prime denotes a derivative with respect to conformal time τ .

(i) Derive the linearized equation of motion for vorticity, w ≡ ∇ × v, and determine its
time dependence.

(ii) Derive the linearized coupled equations of motion for density δ and velocity divergence
θ ≡ ∇ · v. Then derive a single second-order differential equation for δ by eliminating θ.
Assuming an Einstein-de Sitter universe with H = 2/τ and a = (τ/τ0)

2, state or derive the
leading time dependence of δ and explicitly show that it is a solution. Hence determine
the leading time dependence of θ.

(iii) Draw all necessary diagrams to compute the density four-point function at tree level
and at one loop, namely up to O((δ(1))8). Hence, write down expressions for the tree-
level diagrams in terms of the kernels Fn. Finally, discuss whether one should include
additional interactions beyond those appearing in (1) to obtain a consistent prediction for
the one-loop trispectrum.
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