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(a) From the continuity equation, determine the scaling of the energy density p with scale
factor a for a component with constant equation of state parameter w. Hence derive an
expression for the Hubble parameter H(z) in terms of z, Hp, and the density parameters
;0 and equations of state w; of the different components i. Finally, show that the
comoving distance along the line of sight to a certain redshift z is given by
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(b) The angular diameter distance d 4 relates the physical size perpendicular to the line of
sight, x, of a small object to its observed angular size 6 via § = x/d 4. For a flat universe
da is given by:

In all remaining parts of this question, consider a simple, flat LCDM cosmology with
only two components: matter and standard dark energy (with w = —1). By considering
both low- and high redshift limits of d4(z) or otherwise, show that the angular diameter
distance — redshift relation must turn over, i.e., there is a redshift beyond which an object
with fixed physical size appears larger in the sky if it is at higher redshift. Does such a
turn-over also exist in cosmologies with non-standard dark energy, i.e. where the equation
of state of the dark energy component deviates slightly from w = —17

(c) Galaxy surveys are able to make precise observations of the angles #(z) subtended at
different redshifts by the “BAO scale” g4, which is a standard comoving distance, here
assumed oriented perpendicular to the line of sight. Assume that, while the value of x4 is
not known, it is fixed and does not evolve with redshift. Explain how such measurements
of 0(z) can be used to determine the parameter €, in the simple LCDM cosmology,
stating how many different redshifts need to be probed to determine this parameter.

[Hint: note that the angle subtended by xq is given by 0 = axq/da.]

(d) Show that the comoving distance Ax between two sources separated by a small redshift
difference Az and by a small angle A6 is given in the simple LCDM cosmology by

Ax(Az, Af) = W\/Azz + 42 (2, Qm,0) (A0)? (3)

to leading order in Az and Af, where f(z,Qy,0) = Tt ;3+(1 o) and
m,0 z —3im,0

y(z,Qm0) is a function you should specify (but may leave in integral form.)

[Hint: you may assume that the comoving distance Ax can be written in terms

of comoving distances along (Ax)) and perpendicular to the line of sight (Ax.) as
AX? = Axj + Ax7 ]

(e) Now note that the comoving BAO scale x4 can also be measured in redshift difference
(not just angle). Can measurements of both angular and redshift differences corresponding
to the fixed BAO scale be used to determine €, o even if only measurements around a
single redshift are available and the value of x4 is unknown? Briefly justify your answer.
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(a) Explain carefully why the temperature of the cosmic neutrino background, T,, is
related to the CMB photon temperature, T', by

2-(1)"

. . _ erP .
In your explanation, you may assume without proof that the entropy S = 5=V is
conserved in an expanding universe.

(b) After neutrino decoupling, the relic neutrinos retain the relativistic Fermi-Dirac
distribution function, which is given by

1

fp) = elp—w)/Tv 11

(2)
in terms of the magnitude of the momentum p and the chemical potential of the neutrinos
Hu-

First consider the standard case where the chemical potential is negligible. Write
down an integral expression for the energy density of one relic neutrino species and show

that in the limit of early times when T, > m,,, with m, the small mass of this neutrino
species, the energy density is:

T2 4
~ —(T,)". 3
[Hint: you may assume that g = 2 for this neutrino species and that the density of
particles in phase space is #f(p). You may also use the standard integrals: fooo ﬁ =

o (1— ) Cle+1), where ((2) = &, ((3) =~ 1.202, ((4) = &, ((5) ~ 1.037.]

(c) In the remainder of the question, consider a so-called “degenerate” neutrino which has
a large and positive chemical potential u,, > T}, a negligible neutrino mass, and g = 1.
Show that the energy density of such a degenerate neutrino species is approximately given
by

pu ~ Ay, (4)

where you should specify the constant A. How does the energy density of the corresponding
antineutrinos compare to this result? You may assume thermal equilibrium holds.

[Hint: to perform the first phase space integral, you may wish to make a simple,
constant approximation to f(p) in the integrand in the regimes p < p, and p > p, and
neglect the thin transition between these regimes.]

(d) Derive an upper bound on p, /T, by requiring that the energy density in degenerate
neutrinos does not exceed the critical density p. today (which you may assume is given in
terms of the CMB temperature by p. = 6 x 10T%).

(e) Which cosmological observations could distinguish a universe with degenerate neutri-
nos from the standard scenario? Briefly justify your answer.
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3 In this question you will discuss features in the CMB and matter power spectra.
You may quote without proof results for the evolution of the potential perturbation ® in
different epochs.

(a) Starting from the continuity equation

5P, P, P,
6,C+3H< —)6T:—<1+>(V-vr—3<b’) (1)
dpr Py Pr
and the Euler equation
1 P VéP,
13 v, =— L v/£i)} 2
Vit H<3 m)" e (2)

(where 6, vy, pr, P, are the radiation density contrast, velocity perturbation, energy
density, and pressure, primes indicate derivatives with respect to conformal time 7, and
bars indicate background quantities), show that the radiation perturbations during matter
domination are described by the following differential equation:

o — %vm = gv%. (3)
(b) Determine the time-evolution during matter domination of the Sachs-Wolfe term
Sk,7) = %(k, 7) + ®(k,7), which is typically the largest contribution to the CMB
temperature anisotropies. Hence sketch the shape of the Sachs-Wolfe transfer function
Ts on large scales as a function of wavenumber k, where T is defined via the primordial
comoving curvature perturbation R(k,0) by S(k,7) = Ts(k, 7)R(k,0). Comment briefly
on the relation of your result to the shape of the CMB power spectrum. Finally, explain
briefly whether you would expect the baryon transfer function Ty(k,7) = %8:8)) (where d;
is the baryon density contrast) to have oscillatory features soon after recombination.

(c) Sketch the transfer function for the cold dark matter comoving gauge density contrast,

defined as T.(k,7) = %((li{ ’OT)), soon after recombination. You may neglect any impact of
baryons here (so that this is just a sketch of the matter transfer function.) Briefly explain

the origin of the key features apparent in this transfer function.

(d) Finally, consider the growth of matter density perturbations after recombination, now
including small corrections due to the baryons. The evolution of the cold dark matter
(denoted ¢) and baryon (denoted b) densities, which together make up the total matter
density (m), is described by two coupled differential equations

be + 2Hb, — 47 G (pede + ppoy) = 0, (4)
op + 2H by, — 4w G (pede + ppoy) = 0, (5)

where ¢ is the relevant density contrast and dots indicate derivatives with respect to time ¢.
From suitable combinations of these equations, determine uncoupled evolution equations
for the variables D = . — &, and §,, = ﬁﬁ; Oc + %517. Derive the evolution of both D and
0 with scale factor. Hence show that g—g — f at late times, where f is a constant you
should specify. Briefly comment on the physical interpretation of your result.

[Hint: it may be helpful to show that 5—; = %.]

(e) Would you expect the matter power spectrum, when carefully including the impact
of baryons, to have any oscillatory features? Very briefly motivate your answer using the
results of previous sections of the question.
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4 In this question you will discuss single-field slow-roll inflation.

(a) A treatment of quantum fluctuations in single-field slow-roll inflation with a scalar
field ¢ predicts the following dimensionless power spectrum of comoving curvature per-

turbations: ) )
2= (%) () 1)
) 2

where dots indicate time derivatives. Specify when the right hand side of this equation is

2
to be evaluated; then show that the scalar spectral index ngs =1+ dclﬁnA & is given by

ns —1 = —6ey + 2ny, (2)

where €y and 7y are the first and second potential slow-roll parameters, respectively.

. L2

2
[Hint: recall that € = —dclir]‘\,H = —% = QMHLIQ is the first Hubble slow-roll
parameter and 1 = ddl]‘:f is the second Hubble slow roll parameter; you may assume that

for the potential slow-roll parameters ey, ny the following holds during slow-roll inflation:
M? 2
v = =2 (%) = ¢ and ny = M} <—V’$¢’> =2e—1]

(b) Let N(¢) be the number of e-folds of inflation remaining before inflation ends, given
a field value ¢. Show that

- ¢e - 1

N(¢) = / dp————, (3)
P M/ 2ev(9)

where ¢, is the field value when inflation ends.

(c) Assume that the power spectrum of tensor modes arising from inflation is given by

A% (k) = MLQl (%)2 Show that the tensor-to-scalar-ratio r = A2 /A% is given by:

P

r= CEV, (4)

where you should specify the constant C.

d) Consider an inflation model with the potential V (¢) = Vi — m¢* and with ¢ rolling
2

towards ¢ > 0 from ¢ = 0. Assuming that for nearly all of the evolution of ¢, Vj > 7”22‘752,
derive N(¢) and hence show that the tensor-to-scalar-ratio is given by:
~ 2 (9 )" v
r= fC’(ns — 1) e (5>
My

where you should specify the constant f.

Derive an upper limit for  in this model, assuming that ¢. < M,,, that 40 < N < 60,
and that ng — 1 = —0.04.

END OF PAPER
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