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(a) From the continuity equation, determine the scaling of the energy density ρ with scale
factor a for a component with constant equation of state parameter w. Hence derive an
expression for the Hubble parameter H(z) in terms of z, H0, and the density parameters
Ωi,0 and equations of state wi of the different components i. Finally, show that the
comoving distance along the line of sight to a certain redshift z is given by

χ(z) =
1

H0

∫ z

0

dz′
[∑

i Ωi,0(1 + z′)3(1+wi)
]1/2

(1)

(b) The angular diameter distance dA relates the physical size perpendicular to the line of
sight, x, of a small object to its observed angular size θ via θ = x/dA. For a flat universe
dA is given by:

dA(z) =
χ(z)

1 + z
(2)

In all remaining parts of this question, consider a simple, flat LCDM cosmology with
only two components: matter and standard dark energy (with w = −1). By considering
both low- and high redshift limits of dA(z) or otherwise, show that the angular diameter
distance – redshift relation must turn over, i.e., there is a redshift beyond which an object
with fixed physical size appears larger in the sky if it is at higher redshift. Does such a
turn-over also exist in cosmologies with non-standard dark energy, i.e. where the equation
of state of the dark energy component deviates slightly from w = −1?

(c) Galaxy surveys are able to make precise observations of the angles θ(z) subtended at
different redshifts by the “BAO scale” χd, which is a standard comoving distance, here
assumed oriented perpendicular to the line of sight. Assume that, while the value of χd is
not known, it is fixed and does not evolve with redshift. Explain how such measurements
of θ(z) can be used to determine the parameter Ωm,0 in the simple LCDM cosmology,
stating how many different redshifts need to be probed to determine this parameter.

[Hint: note that the angle subtended by χd is given by θ = aχd/dA.]

(d) Show that the comoving distance ∆χ between two sources separated by a small redshift
difference ∆z and by a small angle ∆θ is given in the simple LCDM cosmology by

∆χ(∆z,∆θ) =
f(z,Ωm,0)

H0

√
∆z2 + y2(z,Ωm,0)(∆θ)2 (3)

to leading order in ∆z and ∆θ, where f(z,Ωm,0) = 1√
Ωm,0(1+z)3+(1−Ωm,0)

and

y(z,Ωm,0) is a function you should specify (but may leave in integral form.)

[Hint: you may assume that the comoving distance ∆χ can be written in terms
of comoving distances along (∆χ‖) and perpendicular to the line of sight (∆χ⊥) as
∆χ2 = ∆χ2

‖ + ∆χ2
⊥.]

(e) Now note that the comoving BAO scale χd can also be measured in redshift difference
(not just angle). Can measurements of both angular and redshift differences corresponding
to the fixed BAO scale be used to determine Ωm,0 even if only measurements around a
single redshift are available and the value of χd is unknown? Briefly justify your answer.
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(a) Explain carefully why the temperature of the cosmic neutrino background, Tν , is
related to the CMB photon temperature, T , by

Tν
T

=

(
4

11

)1/3

. (1)

In your explanation, you may assume without proof that the entropy S = ρ+P
T V is

conserved in an expanding universe.

(b) After neutrino decoupling, the relic neutrinos retain the relativistic Fermi-Dirac
distribution function, which is given by

f(p) =
1

e(p−µν)/Tν + 1
(2)

in terms of the magnitude of the momentum p and the chemical potential of the neutrinos
µν .

First consider the standard case where the chemical potential is negligible. Write
down an integral expression for the energy density of one relic neutrino species and show
that in the limit of early times when Tν � mν , with mν the small mass of this neutrino
species, the energy density is:

ρν ≈ 7π2

120
(Tν)4. (3)

[Hint: you may assume that g = 2 for this neutrino species and that the density of
particles in phase space is g

(2π)3
f(p). You may also use the standard integrals:

∫∞
0

xc

ex+1 =

c!
(
1 − 1

2c

)
ζ(c+ 1), where ζ(2) = π2

6 , ζ(3) ≈ 1.202, ζ(4) = π4

90 , ζ(5) ≈ 1.037.]

(c) In the remainder of the question, consider a so-called “degenerate” neutrino which has
a large and positive chemical potential µν � Tν , a negligible neutrino mass, and g = 1.
Show that the energy density of such a degenerate neutrino species is approximately given
by

ρν ≈ Aµ4ν (4)

where you should specify the constant A. How does the energy density of the corresponding
antineutrinos compare to this result? You may assume thermal equilibrium holds.

[Hint: to perform the first phase space integral, you may wish to make a simple,
constant approximation to f(p) in the integrand in the regimes p < µν and p > µν and
neglect the thin transition between these regimes.]

(d) Derive an upper bound on µν/Tν by requiring that the energy density in degenerate
neutrinos does not exceed the critical density ρc today (which you may assume is given in
terms of the CMB temperature by ρc = 6 × 104T 4).

(e) Which cosmological observations could distinguish a universe with degenerate neutri-
nos from the standard scenario? Briefly justify your answer.
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3 In this question you will discuss features in the CMB and matter power spectra.
You may quote without proof results for the evolution of the potential perturbation Φ in
different epochs.
(a) Starting from the continuity equation

δ′r + 3H
(
δPr
δρr
− P̄r
ρ̄r

)
δr = −

(
1 +

P̄r
ρ̄r

)
(∇ · vr − 3Φ′) (1)

and the Euler equation

v′r + 3H
(

1

3
− P̄r
ρ̄r

)
vr = − ∇δPr

ρ̄r + P̄r
−∇Φ (2)

(where δr,vr, ρr, Pr are the radiation density contrast, velocity perturbation, energy
density, and pressure, primes indicate derivatives with respect to conformal time τ , and
bars indicate background quantities), show that the radiation perturbations during matter
domination are described by the following differential equation:

δ′′r −
1

3
∇2δr =

4

3
∇2Φ. (3)

(b) Determine the time-evolution during matter domination of the Sachs-Wolfe term
S(k, τ) ≡ δr

4 (k, τ) + Φ(k, τ), which is typically the largest contribution to the CMB
temperature anisotropies. Hence sketch the shape of the Sachs-Wolfe transfer function
TS on large scales as a function of wavenumber k, where TS is defined via the primordial
comoving curvature perturbation R(k, 0) by S(k, τ) = TS(k, τ)R(k, 0). Comment briefly
on the relation of your result to the shape of the CMB power spectrum. Finally, explain
briefly whether you would expect the baryon transfer function Tb(k, τ) ≡ δb(k,τ)

R(k,0) (where δb
is the baryon density contrast) to have oscillatory features soon after recombination.

(c) Sketch the transfer function for the cold dark matter comoving gauge density contrast,

defined as Tc(k, τ) ≡ ∆c(k,τ)
R(k,0) , soon after recombination. You may neglect any impact of

baryons here (so that this is just a sketch of the matter transfer function.) Briefly explain
the origin of the key features apparent in this transfer function.

(d) Finally, consider the growth of matter density perturbations after recombination, now
including small corrections due to the baryons. The evolution of the cold dark matter
(denoted c) and baryon (denoted b) densities, which together make up the total matter
density (m), is described by two coupled differential equations

δ̈c + 2Hδ̇c − 4πG(ρ̄cδc + ρ̄bδb) = 0, (4)

δ̈b + 2Hδ̇b − 4πG(ρ̄cδc + ρ̄bδb) = 0, (5)

where δ is the relevant density contrast and dots indicate derivatives with respect to time t.
From suitable combinations of these equations, determine uncoupled evolution equations
for the variables D ≡ δc − δb and δm = ρ̄c

ρ̄m
δc + ρ̄b

ρ̄m
δb. Derive the evolution of both D and

δm with scale factor. Hence show that δc
δb
→ f at late times, where f is a constant you

should specify. Briefly comment on the physical interpretation of your result.

[Hint: it may be helpful to show that δc
δb

= ρ̄mδm+ρ̄bD
ρ̄mδm−ρ̄cD .]

(e) Would you expect the matter power spectrum, when carefully including the impact
of baryons, to have any oscillatory features? Very briefly motivate your answer using the
results of previous sections of the question.
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4 In this question you will discuss single-field slow-roll inflation.

(a) A treatment of quantum fluctuations in single-field slow-roll inflation with a scalar
field φ predicts the following dimensionless power spectrum of comoving curvature per-
turbations:

∆2
R =

(
H

φ̇

)2(H
2π

)2

, (1)

where dots indicate time derivatives. Specify when the right hand side of this equation is

to be evaluated; then show that the scalar spectral index ns ≡ 1 +
d ln ∆2

R
d ln k is given by

ns − 1 = −6εV + 2ηV , (2)

where εV and ηV are the first and second potential slow-roll parameters, respectively.

[Hint: recall that ε ≡ −d lnH
dN = − Ḣ

H2 =

1

2M2
pl

φ̇2

H2 is the first Hubble slow-roll

parameter and η = d ln ε
dN is the second Hubble slow roll parameter; you may assume that

for the potential slow-roll parameters εV , ηV the following holds during slow-roll inflation:

εV ≡ M2
pl

2

(
V,φ
V

)2
= ε and ηV ≡M2

pl

(
V,φφ
V

)
= 2ε− η

2 .]

(b) Let Ñ(φ) be the number of e-folds of inflation remaining before inflation ends, given
a field value φ. Show that

Ñ(φ) =

∫ φe

φ
dφ̃

1

Mpl

√
2εV (φ̃)

, (3)

where φe is the field value when inflation ends.

(c) Assume that the power spectrum of tensor modes arising from inflation is given by

∆2
h(k) = 8

M2
pl

(
H
2π

)2
. Show that the tensor-to-scalar-ratio r ≡ ∆2

h/∆
2
R is given by:

r = CεV , (4)

where you should specify the constant C.

(d) Consider an inflation model with the potential V (φ) = V0 − m2φ2

2 and with φ rolling

towards φ > 0 from φ = 0. Assuming that for nearly all of the evolution of φ, V0 � m2φ2

2 ,

derive Ñ(φ) and hence show that the tensor-to-scalar-ratio is given by:

r ≈ fC(ns − 1)2

(
φe
Mpl

)2

e(ns−1)Ñ(φ) (5)

where you should specify the constant f .

Derive an upper limit for r in this model, assuming that φe < Mpl, that 40 < Ñ < 60,
and that ns − 1 = −0.04.
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