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1

Suppose (M, g) is a manifold of dimension n > 2 with metric g, and let ∇ be the
Levi-Civita connection.

a) i) Define the Riemann tensor Rabcd. You should justify carefully why any
expression you give defines a tensor.

ii) Show that in a coordinate basis

Rτ σµν = ∂µΓσ
τ
ν − ∂νΓσ

τ
µ + Γσ

ρ
νΓρ

τ
µ − Γσ

ρ
µΓρ

τ
ν .

iii) Establish the Bianchi identities

Ra[bcd] = 0, Rab[cd;e] = 0,

and the contracted Bianchi identity Rab;a − 1
2R;b = 0.

[You may assume the existence of normal coordinates about any point p ∈M .]

b) We say that a metric has isotropic curvature if

Rabcd = K(gacgbd − gadgbc).

Show that K must be a constant, and relate it to the scalar curvature R.

c) The geodesic deviation equation is

T a∇a
(
T b∇bY c

)
= RcdabT

dT aY b.

Explain briefly what the vectors T a and Y a represent.

d) Suppose now that g is a Lorentzian metric for a four-dimensional spacetime with
isotropic curvature. Suppose an observer falls freely along the timelike curve
λ = λ(t), where t is proper time along the curve. The observer picks an orthonormal
frame {eα(0)}3α=0 at λ(0) with e0(0) = λ̇(0) and extends this to a local frame
{eα(t)}3α=0 along λ by parallel propagation.

i) Show that {eα(t)}3α=0 remains orthonormal along λ.

ii) A second body falls freely along the curve λ̃ = λ̃(t), such that in a local
coordinate system {xµ} we may write

λ̃µ(t) = λµ(t) + eµα(t)yα(t),

where eα(t) = eµα(t) ∂
∂xµ . Suppose that initially y0(0) = ẏ0(0) = 0, yi(0) = Y i,

ẏi(0) = V i, i = 1, 2, 3, where Y i and V i are O(ε). Find yα(t), distinguishing
the cases K < 0,K = 0,K > 0, ignoring O(ε2) corrections.
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2 Here (M, g) is a Lorentzian manifold.

a) Under a small variation of the metric gab → gab + δgab, derive formulae for the
change to first order in i) the inverse metric; ii) the volume form

b) Consider the following action for a real scalar field ψ, where µ is a real constant:

S[ψ, g] =
1

2

∫

M

(
−gab∇aψ∇bψ − µ2ψ2

)
dvolg

i) Show that under an arbitrary variation ψ → ψ + δψ, with δψ vanishing near
∂M , δS vanishes if and only if ψ solves the Klein–Gordon equation

∇a∇aψ − µ2ψ = 0.

ii) Find the energy-momentum tensor, T ab, associated to this matter model, and
show directly that ∇aT ab = 0 when ψ satisfies the Klein–Gordon equation.

iii) State Killing’s equation. Show that if Ka is a Killing vector, then Ja = T abK
b

satisfies ∇aJa = 0, provided that ψ satisfies the Klein–Gordon equation.

c) Consider R4 with coordinates (t,x), where x = (x1, x2, x3), equipped with the metric

g = −f2(x)dt2 + hij(x)dxidxj .

Here f > 0 and hij is positive definite, with inverse hij .

i) Starting from the definition of the Lie derivative, explain why ∂
∂t is a Killing

field for this metric.

ii) Suppose that ψ solves the Klein–Gordon equation on this background, and
vanishes for large |x|. By applying the divergence theorem on the region
[τ1, τ2]× R3 to the vector field Ja defined above, or otherwise, show that

E(τ) =
1

2

∫

Στ

[
f−1(∂tψ)2 + fhij∂iψ∂jψ + fµ2ψ2

]√
hd3x

is independent of τ , where h = dethij and Στ = {(t,x) ∈ R4|t = τ}
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a) Suppose that a spacetime metric may be written in wave coordinates as a perturb-
ation of the Minkoswki metric:

gµν = ηµν + εhµν , ηµν = diag(−1, 1, 1, 1).

Writing the energy-momentum tensor as εTµν and expanding to O(ε), derive the
linearized Einstein equations in wave gauge

∂ρ∂ρhσν = −16πTµν , ∂µh
µ
ν = 0,

where hµν = hµν − 1
2hτ

τηµν , and indices are raised and lowered with the Minkowski
metric.
You may assume that in any coordinate basis the Ricci tensor may be written

Rσν = −1

2
gµρ∂µ∂ρgσν + ΓλτνΓλτ σ + ΓλτνΓτ σ

λ + ΓλτσΓτ ν
λ

+
1

2
∂σΓµν

µ +
1

2
∂νΓµσ

µ − Γµλ
µΓν

λ
σ

and that the wave coordinate condition takes the form Γµ
νµ = 0.

b) In “almost inertial” coordinates (t, x, y, z) we model a star as a perfect fluid with
p = 0, and mass-energy density ρ that is independent of t, with centre of mass at
the origin. We assume ρ is small everywhere, and vanishes for r2 = |r|2 > R2,
where r = (x, y, z). The star undergoes slow, rigid, rotation about the z-axis, so
that the fluid four-velocity is given by uµ = (1,−Ωy,Ωx, 0) and we neglect terms of
O(Ω2R2). The energy-momentum tensor is given by Tµν = ρuµuν .

i) Show that conservation of the energy-momentum tensor implies that ρ is
axisymmetric: x∂yρ− y∂xρ = 0.

ii) Show that hij = 0 and

h00(r) = 4

∫

R3

ρ(r′)
|r− r′|d

3r′, h0i(r) = 4Ω

∫

R3

ρ(r′)
|r− r′|(y

′,−x′, 0)d3r′.

(You need not verify the gauge condition is satisfied).

iii) Ignoring terms of O(mR2/r3), deduce that for r � R

g = −
(

1− 2m

r

)
dt2 +

(
1 +

2m

r

)
(dx2 + dy2 + dz2) +

4ma

r3
(ydx− xdy)dt

where m =
∫
R3 ρ(r′)d3r′, and you should give an expression for a in terms of

ρ.

You may assume that the Poisson equation in three dimensions, ∇2φ = f , has
solution

φ(r) = − 1

4π

∫

R3

f(r′)
|r − r′|d

3r′
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4 Here (M, g) is a four dimensional Lorentzian spacetime.

a) A perfect fluid is described by its four-velocity field, ua, satisfying uau
a = −1,

together with the pressure p and mass-energy density ρ. The associated energy-
momentum tensor is given by

Tab = (ρ+ p)uaub + pgab.

Show that conservation of Tab implies the first law of thermodynamics and Euler’s
equation:

ua∇aρ+ (ρ+ p)∇aua = 0, (ρ+ p)ub∇bua = −(gab + uaub)∇bp. (†)

b) The three-sphere, S3, can be parameterized by the Euler angles (θ, φ, ψ), where
0 < θ < π, 0 < φ < 2π, 0 < ψ < 4π. Define the following 1-forms

σ1 = − sinψdθ + cosψ sin θdφ, σ2 = cosψdθ + sinψ sin θdφ, σ3 = dψ + cos θdφ.

Show that dσi = 1
2δ
ilεljkσ

j ∧ σk, where i, j, k, l run over 1, 2, 3 with summation
convention assumed, and εijk = ε[ijk] is the usual alternating tensor with ε123 = 1.

c) Let M = R× S3 be parameterised by (t, θ, φ, ψ), and consider the metric

g = −dt2 + (σ1)2 + (σ2)2 + (σ3)2, (∗)

with the σi as in part b) above. Let e0 = dt and ei = σi, i = 1, 2, 3. Find the
connection one-forms and curvature two-forms associated to the orthonormal frame
{eµ}3µ=0, and show that in this basis the only non-vanishing components of the
Riemann tensor are

Rijkl =
1

4
(δikδjl − δilδjk).

Hence, find the Ricci and Einstein tensor for this spacetime.
You may assume without proof Cartan’s first and second structure equations:

deµ + ωµν ∧ eν = 0, dωµν + ωµσ ∧ ωσν = Θµ
ν .

d) Deduce that the metric (∗) satisfies the Einstein equations with a cosmological
constant Λ:

Gab + Λgab = 8πTab

for Tab of the form (†) where u = ∂
∂t , and ρ, p are constants which you should

determine in terms of Λ. Show that your solution has vanishing pressure and positive
mass-energy density for a particular choice of Λ, which you should state.

END OF PAPER

Part III, Paper 309


