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1 Consider the algebra for the generators of the Poincaré group: Pµ,Mµν

[
Pµ , P ν

]
= 0[

Mµν , P σ
]

= i
(
Pµ ηνσ − P ν ηµσ

)
[
Mµν , Mρσ

]
= i

(
Mµσ ηνρ + Mνρ ηµσ − Mµρ ηνσ − Mνσ ηµρ

)
.

Consider also the Pauli-Ljubanski vector Wµ := 1
2 εµνρσ P

νMρσ satisfying

[Wµ, Pν ] = 0, [Wµ,Mρσ] = i (ηµρWσ − ηµσWρ) , [Wµ,Wν ] = −i εµνρσW ρP σ .

(a) Show that the operators C1 = PµPµ and C2 = WµWµ commute with all the generators
and are the Casimir operators of the Poincaré group.

(b) Consider the unitary representations of the Poincaré group corresponding to C1 =
m2 > 0 and C1 = 0. By picking 4-vectors in the forward light-cone, identify the Little
group in each case and the corresponding finite dimensional unitary representations of
the Little group that can be identified with massive and massless particles respectively.

(c) Define what is meant by helicity λ for the C1 = 0 case and show that λ =
0,±1/2,±1,±3/2,±2, · · · .

(d) Consider a vector field:

Aµ(x) =
1∑

λ=−1

∫
d3p

16π3Ep

[
εµ(p, λ) apλ e

ipx + h.c.
]

(1)

Impose constraints on the polarisation vectors εµ that reduce the 4 degrees of freedom
corresponding to a vector in 4 dimensions to only 2 degrees of freedom required to
describe a massless particle of helicity λ = ±1. Explain what is meant by the statement
that gauge invariance is only a redundancy. Show then that for a given transition
amplitude described by M = εµMµ, Lorentz invariance requires qµMµ = 0 where
qµ corresponds to the momentum of the massless helicity λ = ±1 particle in the
amplitude.

(e) Explain in detail how if Aµ corresponds to the photon field, the condition qµMµ = 0
can be used to prove charge conservation. What can be said for helicities λ > 2?
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2 Consider the bosonic sector of the electroweak theory with gauge symmetry
SU(2)L × U(1)Y and corresponding gauge fields W a

µ , a = 1, 2, 3 and Bµ. The symmetry
is broken to U(1)EM by a complex scalar field H which is a doublet of SU(2)L with
hypercharge Y = 1/2.

(a) Write down the most general bosonic renormalisable Lagrangian consistent with
locality, stability and the gauge symmetries for the fields W a

µ , Bµ and H. Show that
the Lagrangian is unique up to four arbitrary parameters that you should identify and
that, depending on the sign of the coefficient of |H|2 in the scalar potential V (H),
symmetry breaking occurs.

(b) Select a particular value of 〈H〉 = (0, v/
√

2)T and expand around it as:

H =
1√
2
e−iξ

a(x)Ta

(
0

v + h(x)

)
(1)

with T a the SU(2)L generators, ξa(x) the Goldstone modes and h(x) the physical
Higgs field. Show explicitly that the fields ξa(x) appear in the Lagrangian only in the
combination ∂µξ

aT a + gW a
µT

a + 1
2g
′Bµ and can then be eliminated by a gauge choice.

(c) Write down the quadratic part of the bosonic Lagrangian by diagonalising the mass
matrix for the gauge fields. Write explicitly an expression for the mass of each of the
particles. Explain why the massless state can be identified as the photon.

(d) Now, introduce three generations of quark fields QiL, u
i
R, d

i
R, with i = 1, 2, 3 the

generation index, transforming as (3,2)Y=1/6; (3̄,1)Y=2/3 and (3̄,1)Y=−1/3 under
SU(3)c × SU(2)L × U(1)Y , respectively. Write down their gauge invariant couplings
to the Higgs field H. Show that after expanding around the vacuum, the fact that
〈H〉 6= 0 gives rise to mass terms for the quark fields.

(e) Diagonalise the corresponding mass matrix. Then, after properly redefining the quark
fields, show that the coupling of up and down quarks to W bosons is not flavour
diagonal and is determined by a unitary matrix V = VCKM .

LW−quarks =
g√
2

[
W+
µ ū

i
Lγ

µVijd
j
L +W−µ d̄

i
Lγ

µV †iju
j
L

]
(2)

Count the number of free parameters in VCKM .

(f) Complete the fermion spectrum of the Standard Model with the lepton fields LiL, e
i
R

i = 1, 2, 3, transforming as (1,2)Y=−1/2; (1,1)Y=−1 under SU(3)c×SU(2)L×U(1)Y .
Briefly explain how neutrinos can get a mass if right handed neutrinos are added to
the spectrum transforming as νR = (1̄,1)Y=0.
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3 Consider a complex scalar field Φ(xµ) and a Dirac fermion field Ψ(xµ) with xµ

being the four-dimensional spacetime coordinates.

(a) Argue why these fields have scaling dimension [Φ] = 1 and [Ψ] = 3/2 respectively.
Write down the most general renormalisable Lagrangian density for these fields
L(Φ,Ψ, ∂µΦ, ∂µΨ), which is invariant under the global U(1) transformation Φ →
e2iαΦ, Ψ → eiαΨ with 0 6 α < 2π.

(b) Explain under which conditions the global U(1) symmetry is spontaneously broken.
What is the unbroken subgroup?

(c) Compute the conserved Noether current Jµ and the corresponding charge Q.

(d) Explain why the naive prescription to couple Φ to a gauge field Aµ(xν): L(Φ, Aµ)
through the coupling JµAµ does not provide a gauge invariant coupling and determine
the extra term that needs to be added in order to have a gauge invariant coupling.
Does the result agree with the prescription of substituting partial derivatives with
covariant derivatives? Explain why this issue does not appear for the case of the
Dirac fermion Ψ(xµ) coupled to a gauge field: L(Ψ, Aµ).

(e) Write down a U(1) invariant coupling between Φ and Ψ that contributes to the mass
of Ψ if the symmetry is broken. What is the dimension of the operator? Describe the
relevance of this term as compared to the original mass term for Ψ.
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(a) The scale dependence of a renormalised coupling g(µ) is given, to leading order, by
the β function equation:

µ
dα

dµ
= − b

2π
α2,

where µ is the renormalisation scale and b is a real constant. Consider an SU(Nc)
gauge theory with Nf flavours in the fundamental representation of SU(Nc) for which
b = 1

3 (11Nc − 2Nf ). For QCD Nc = 3 and the gauge coupling can be called g3.

(i) Solve the β function equation for α3 = g23/(4π). Sketch the profile of α3(µ) and
estimate the scale ΛQCD, at which QCD becomes strongly coupled, as a function
of b and the renormalisation scale µ.

(ii) Briefly explain the difference between theories in which b < 0 and b > 0.

(iii) Suppose there is an energy scale MGUT > MZ , where MZ is the mass of the
Z boson, at which the three gauge couplings of the Standard Model coincide
α1(MGUT ) = α2(MGUT ) = α3(MGUT ) (corresponding to U(1), SU(2)L and
SU(3)c, respectively). Show that this implies that at the MZ scale they are
related as:

1

α3(MZ)
=

1

α2(MZ)
+
b3 − b2
b1 − b2

[
1

α1(MZ)
− 1

α2(MZ)

]
.

Where bi are the β function coefficients for the couplings αi, respectively.

(b) Keeping in mind that the masses of the quarks are known to be mu,d ∼ O(1)MeV
with the other ones much heavier (ms,mc,mb,mt ∼ 102, 103, 4 × 103, 1.7 × 105 MeV
respectively), write down the low-energy QCD Lagrangian including only the u and
d quarks consistent with the gauge symmetry SU(3)c × U(1)EM . Show that baryon
number is an accidental symmetry of this Lagrangian.

(c) Identify the approximate (chiral) symmetries of this Lagrangian in the limit of
mu,d → 0 and argue why they can be broken.

(i) Construct an effective field theory for scalar fields that captures the desired
symmetry breaking. Identify the unbroken symmetry group and the identity of
the pseudo-Goldstone modes of this approximate symmetry.

(ii) Write down an effective Lagrangian for the pseudo-Goldstone bosons for energies
E � ΛQCD.

(iii) Could this approximate symmetry explain the mass difference between protons
and neutrons?

(d) Is it possible to extend this analysis to include also the s and c quarks? Explain.
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