MAMA/225, NST3AS/225, MAAS/225

MAT3 MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2023 $-1:30 \mathrm{pm}$ to $3:30 \mathrm{pm}$

PAPER 225

FUNCTIONAL DATA ANALYSIS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let X be a random element of $L^2[0,1]$ such that $\mathbb{E}||X||^2 < \infty$, $\mathbb{E}X = \mu$ and with covariance operator $C_X(\cdot) = \mathbb{E}(\langle (X-\mu), \cdot \rangle (X-\mu)).$

(a) State and Prove the Karhunen-Loève Theorem.

[Mercer's Theorem can be used without proof as long as it is stated and you do not need to prove a continuous covariance function is a Mercer Kernel].

(b) Let

$$c_X(s,t) = \min(s,t) - st \qquad s,t \in [0,1]$$

where c_X is the kernel of C_X . Use the Karhunen-Loève Theorem to find an expansion of X in terms of the eigencomponents of C_X .

2 Let X, X_1, \ldots, X_n be i.i.d. random elements of $L^2[0,1]$ such that $\mathbb{E}||X||^4 < \infty$, $\mathbb{E}X = \mu$ and with covariance operator C_X . Let $X^*, X_1^*, \ldots, X_n^*$ be i.i.d. random elements of $L^2[0,1]$ such that $\mathbb{E}||X^*||^4 < \infty$, $\mathbb{E}X^* = \mu^*$ and with covariance operator $C_{X^*} = C_X$. Assume that the two samples are independent of each other.

By considering the eigendecomposition of C_X , for some $K \in \mathbb{N}$, find a K-dimensional test to determine whether $\mu = \mu^*$. Determine its asymptotic properties as $n \to \infty$ under the null hypothesis $H_0: \mu = \mu^*$ and under the alternative $H_A: \mu \neq \mu^*$.

[You may assume that the first K + 1 eigenvalues of C_X are all distinct. If you state them, you may use the convergence properties of eigenvalues, eigenfunctions and any version of the central limit theorem without proof].

2

3

(a) Let X be a random element of $L^2[0,1]$ such that $\mathbb{E}||X||^2 < \infty$, $\mathbb{E}X = \nu$. Let h be a random element of $L^2[0,1]$ such that $\mathbb{E}||h||^2 < \infty$, $\mathbb{E}h(t) = t, t \in [0,1]$, and where h(0) = 0, h(1) = 1, and h is strictly monotone. Assume that h and h^{-1} are differentiable. Define $Y = X \circ h^{-1}$, where $(X \circ h)(t) = X(h(t))$. Define $\mathbb{E}Y = \mu$.

3

- (i) Show that $\mathbb{E}||Y-\mu||^2$ can be decomposed into terms involving $A\mathbb{E}||X-\nu||^2$, $A||\nu||^2$, and $||\mu||^2$ and find the constant A in terms of the relationship between functions of X and h. When does A = 1?
- (ii) Let $\gamma : [0,1] \to [0,1]$ be a diffeomorphism, $\gamma(0) = 0, \gamma(1) = 1$. Define $Q(h(t)) = \frac{h'(t)}{\sqrt{|h'(t)|}}$, where ' denotes the derivative. Let h_1, \ldots, h_n be realizations of h. Show that

$$||Q(h_i) - Q(h_j)|| = ||Q(h_i \circ \gamma) - Q(h_j \circ \gamma)||, \quad 1 \le i, j \le n$$

(b) (i) Define the Procrustes Distance

.

(ii) Let C_1 and C_2 be covariance operators on $L^2[0,1]$. Assume that there exists L_i^p such that $L_i^p(L_i^p)^* = C_i^p$, i = 1, 2, and where * indicates the adjoint operator. Assume $L_i^p \to L_i$ in the Hilbert-Schmidt norm as $p \to \infty$ where $L_i L_i^* = C_i$. Prove that

$$d_P(C_1^p, C_2^p)^2 \to d_P(C_1, C_2)^2 \quad \text{as } p \to \infty$$

where $d_P(C_1, C_2)^2 = \|L_1\|_{\text{HS}}^2 + \|L_2\|_{\text{HS}}^2 - 2\sup_{R \in O\{L^2[0,1]\}} tr(R^*L_2^*L_1)$ is the space of unitary operators on $L^2[0,1]$ and $\|\cdot\|_{\text{HS}}$ is the Hilbert-Schmidt norm, and with $d_P(C_1^p, C_2^p)^2$ defined analogously.

4 Let X, X_1, \ldots, X_n be i.i.d. random elements of $L^2[0,1]$ such that $\mathbb{E}||X||^4 < \infty$, $\mathbb{E}X = 0$ and with positive definite covariance operator C_X . Let $\epsilon_i \sim N(0, \sigma^2)$, and assume the sets $\{X_i\}$ and $\{\epsilon_i\}$ are independent. Let

$$Y_i = \int_0^1 X_i(t)\beta(t)dt + \epsilon_i, \quad i = 1, \dots, n.$$

- (a) Assume an orthonormal basis of fixed basis functions $\{B_k\}_{k=1}^{\infty}$ of $L^2[0,1]$. For some $K \in \mathbb{N}$, let $\beta(t)$ be expressed as a truncated sum of the basis functions $\beta(t) = \sum_{k=1}^{K} c_k B_k(t)$. This truncation is an approximation to $\beta(t) = \sum_{k=1}^{\infty} c_k B_k(t)$.
 - (i) Find the bias from the least squares estimator using the approximation and for K fixed, show that, in general, it is not consistent as $n \to \infty$. [You may use without proof that for a suitably chosen matrix \tilde{X} , $\frac{1}{n}\tilde{X}^T\epsilon \xrightarrow{p} 0$ and $\frac{1}{n}\tilde{X}^T\tilde{X} \xrightarrow{p} \Sigma_{\tilde{X}}$ for some positive definite matrix $\Sigma_{\tilde{X}}$].
 - (ii) If C_X is known, explain (briefly) the difference if the fixed basis functions $\{B_k(t)\}_{k=1}^{\infty}$ were chosen as the eigenbasis of C_X .
- (b) Assume $\{B_k\}_{k=1}^{\infty}$ is an orthonormal basis of $L^2[0,1]$ with second derivatives, and for some fixed $K \in \mathbb{N}$, let $\beta(t) = \sum_{k=1}^{K} c_k B_k(t)$. For some $\rho \in \mathbb{R}$, let the loss function L,

$$L(\beta) = \sum_{i=1}^{n} |Y_i - \langle X_i, \beta \rangle|^2 + \rho ||\beta''||^2,$$

where $\beta''(t)$ is the second derivative of $\beta(t)$.

Find an estimator for the coefficients c_k , which minimize the loss function L. [You may assume it is possible to calculate $\langle X_i, B_k \rangle$].

END OF PAPER