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1 Let X be a random element of L2[0, 1] such that E‖X‖2 < ∞, EX = µ and with
covariance operator CX(·) = E(〈(X − µ), ·〉(X − µ)).

(a) State and Prove the Karhunen-Loève Theorem.

[Mercer’s Theorem can be used without proof as long as it is stated and you do
not need to prove a continuous covariance function is a Mercer Kernel].

(b) Let
cX(s, t) = min(s, t)− st s, t ∈ [0, 1]

where cX is the kernel of CX . Use the Karhunen-Loève Theorem to find an
expansion of X in terms of the eigencomponents of CX .

2 Let X,X1, . . . , Xn be i.i.d. random elements of L2[0, 1] such that E‖X‖4 < ∞,
EX = µ and with covariance operator CX . Let X∗, X∗

1 , . . . , X
∗
n be i.i.d. random elements

of L2[0, 1] such that E‖X∗‖4 < ∞, EX∗ = µ∗ and with covariance operator CX∗ = CX .
Assume that the two samples are independent of each other.

By considering the eigendecomposition of CX , for someK ∈ N, find aK-dimensional
test to determine whether µ = µ∗. Determine its asymptotic properties as n → ∞ under
the null hypothesis H0 : µ = µ∗ and under the alternative HA : µ 6= µ∗.

[You may assume that the first K + 1 eigenvalues of CX are all distinct. If you
state them, you may use the convergence properties of eigenvalues, eigenfunctions and
any version of the central limit theorem without proof].
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(a) Let X be a random element of L2[0, 1] such that E‖X‖2 < ∞, EX = ν. Let
h be a random element of L2[0, 1] such that E‖h‖2 < ∞, Eh(t) = t, t ∈ [0, 1],
and where h(0) = 0, h(1) = 1, and h is strictly monotone. Assume that h and
h−1 are differentiable. Define Y = X ◦ h−1, where (X ◦ h)(t) = X(h(t)). Define
EY = µ.

(i) Show that E‖Y −µ‖2 can be decomposed into terms involving AE‖X−ν‖2,
A‖ν‖2, and ‖µ‖2 and find the constant A in terms of the relationship
between functions of X and h. When does A = 1?

(ii) Let γ : [0, 1] → [0, 1] be a diffeomorphism, γ(0) = 0, γ(1) = 1. Define

Q(h(t)) = h′(t)√
|h′(t)|

, where ′ denotes the derivative. Let h1, . . . , hn be

realizations of h. Show that

‖Q(hi)−Q(hj)‖ = ‖Q(hi ◦ γ)−Q(hj ◦ γ)‖, 1 6 i, j 6 n

.

(b) (i) Define the Procrustes Distance

(ii) Let C1 and C2 be covariance operators on L2[0, 1]. Assume that there
exists Lp

i such that Lp
i (L

p
i )
∗ = Cp

i , i = 1, 2, and where ∗ indicates the
adjoint operator. Assume Lp

i → Li in the Hilbert-Schmidt norm as p→∞
where LiL

∗
i = Ci. Prove that

dP (Cp
1 , C

p
2 )2 → dP (C1, C2)

2 as p→∞

where dP (C1, C2)
2 = ‖L1‖2HS+‖L2‖2HS−2 supR∈O{L2[0,1]} tr(R

∗L∗2L1) is the

space of unitary operators on L2[0, 1] and ‖ · ‖HS is the Hilbert-Schmidt
norm, and with dP (Cp

1 , C
p
2 )2 defined analogously.
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4 Let X,X1, . . . , Xn be i.i.d. random elements of L2[0, 1] such that E‖X‖4 < ∞,
EX = 0 and with positive definite covariance operator CX . Let εi ∼ N(0, σ2), and assume
the sets {Xi} and {εi} are independent. Let

Yi =

∫ 1

0
Xi(t)β(t)dt+ εi, i = 1, . . . , n.

(a) Assume an orthonormal basis of fixed basis functions {Bk}∞k=1 of L2[0, 1].
For some K ∈ N, let β(t) be expressed as a truncated sum of the basis
functions β(t) =

∑K
k=1 ckBk(t). This truncation is an approximation to

β(t) =
∑∞

k=1 ckBk(t).

(i) Find the bias from the least squares estimator using the approximation
and for K fixed, show that, in general, it is not consistent as n→∞.

[You may use without proof that for a suitably chosen matrix X̃, 1
nX̃

T ε
p−→

0 and 1
nX̃

T X̃
p−→ ΣX̃ for some positive definite matrix ΣX̃ ].

(ii) If CX is known, explain (briefly) the difference if the fixed basis functions
{Bk(t)}∞k=1 were chosen as the eigenbasis of CX .

(b) Assume {Bk}∞k=1 is an orthonormal basis of L2[0, 1] with second derivatives, and

for some fixed K ∈ N, let β(t) =
∑K

k=1 ckBk(t). For some ρ ∈ R, let the loss
function L,

L(β) =
n∑

i=1

|Yi − 〈Xi, β〉|2 + ρ‖β′′‖2,

where β
′′
(t) is the second derivative of β(t).

Find an estimator for the coefficients ck, which minimize the loss function L.

[You may assume it is possible to calculate 〈Xi, Bk〉].
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