PAPER 225

FUNCTIONAL DATA ANALYSIS

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.
Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

STATIONERY REQUIREMENTS	SPECIAL REQUIREMENTS
Cover sheet	None
Treasury tag	
Script paper	
Rough paper	

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let X be a random element of $L^{2}[0,1]$ such that $\mathbb{E}\|X\|^{2}<\infty, \mathbb{E} X=\mu$ and with covariance operator $C_{X}(\cdot)=\mathbb{E}(\langle(X-\mu), \cdot\rangle(X-\mu))$.
(a) State and Prove the Karhunen-Loève Theorem.
[Mercer's Theorem can be used without proof as long as it is stated and you do not need to prove a continuous covariance function is a Mercer Kernel].
(b) Let

$$
c_{X}(s, t)=\min (s, t)-s t \quad s, t \in[0,1]
$$

where c_{X} is the kernel of C_{X}. Use the Karhunen-Loève Theorem to find an expansion of X in terms of the eigencomponents of C_{X}.

2 Let X, X_{1}, \ldots, X_{n} be i.i.d. random elements of $L^{2}[0,1]$ such that $\mathbb{E}\|X\|^{4}<\infty$, $\mathbb{E} X=\mu$ and with covariance operator C_{X}. Let $X^{*}, X_{1}^{*}, \ldots, X_{n}^{*}$ be i.i.d. random elements of $L^{2}[0,1]$ such that $\mathbb{E}\left\|X^{*}\right\|^{4}<\infty, \mathbb{E} X^{*}=\mu^{*}$ and with covariance operator $C_{X^{*}}=C_{X}$. Assume that the two samples are independent of each other.

By considering the eigendecomposition of C_{X}, for some $K \in \mathbb{N}$, find a K-dimensional test to determine whether $\mu=\mu^{*}$. Determine its asymptotic properties as $n \rightarrow \infty$ under the null hypothesis $H_{0}: \mu=\mu^{*}$ and under the alternative $H_{A}: \mu \neq \mu^{*}$.
[You may assume that the first $K+1$ eigenvalues of C_{X} are all distinct. If you state them, you may use the convergence properties of eigenvalues, eigenfunctions and any version of the central limit theorem without proof].

3
(a) Let X be a random element of $L^{2}[0,1]$ such that $\mathbb{E}\|X\|^{2}<\infty, \mathbb{E} X=\nu$. Let h be a random element of $L^{2}[0,1]$ such that $\mathbb{E}\|h\|^{2}<\infty, \mathbb{E} h(t)=t, t \in[0,1]$, and where $h(0)=0, h(1)=1$, and h is strictly monotone. Assume that h and h^{-1} are differentiable. Define $Y=X \circ h^{-1}$, where $(X \circ h)(t)=X(h(t))$. Define $\mathbb{E} Y=\mu$.
(i) Show that $\mathbb{E}\|Y-\mu\|^{2}$ can be decomposed into terms involving $A \mathbb{E}\|X-\nu\|^{2}$, $A\|\nu\|^{2}$, and $\|\mu\|^{2}$ and find the constant A in terms of the relationship between functions of X and h. When does $A=1$?
(ii) Let $\gamma:[0,1] \rightarrow[0,1]$ be a diffeomorphism, $\gamma(0)=0, \gamma(1)=1$. Define $Q(h(t))=\frac{h^{\prime}(t)}{\sqrt{\left|h^{\prime}(t)\right|}}$, where ' denotes the derivative. Let h_{1}, \ldots, h_{n} be realizations of h. Show that

$$
\left\|Q\left(h_{i}\right)-Q\left(h_{j}\right)\right\|=\left\|Q\left(h_{i} \circ \gamma\right)-Q\left(h_{j} \circ \gamma\right)\right\|, \quad 1 \leqslant i, j \leqslant n
$$

(b) (i) Define the Procrustes Distance
(ii) Let C_{1} and C_{2} be covariance operators on $L^{2}[0,1]$. Assume that there exists L_{i}^{p} such that $L_{i}^{p}\left(L_{i}^{p}\right)^{*}=C_{i}^{p}, i=1,2$, and where * indicates the adjoint operator. Assume $L_{i}^{p} \rightarrow L_{i}$ in the Hilbert-Schmidt norm as $p \rightarrow \infty$ where $L_{i} L_{i}^{*}=C_{i}$. Prove that

$$
d_{P}\left(C_{1}^{p}, C_{2}^{p}\right)^{2} \rightarrow d_{P}\left(C_{1}, C_{2}\right)^{2} \quad \text { as } p \rightarrow \infty
$$

where $d_{P}\left(C_{1}, C_{2}\right)^{2}=\left\|L_{1}\right\|_{\mathrm{HS}}^{2}+\left\|L_{2}\right\|_{\mathrm{HS}}^{2}-2 \sup _{R \in O\left\{L^{2}[0,1]\right\}} \operatorname{tr}\left(R^{*} L_{2}^{*} L_{1}\right)$ is the space of unitary operators on $L^{2}[0,1]$ and $\|\cdot\|_{\text {HS }}$ is the Hilbert-Schmidt norm, and with $d_{P}\left(C_{1}^{p}, C_{2}^{p}\right)^{2}$ defined analogously.

4 Let X, X_{1}, \ldots, X_{n} be i.i.d. random elements of $L^{2}[0,1]$ such that $\mathbb{E}\|X\|^{4}<\infty$, $\mathbb{E} X=0$ and with positive definite covariance operator C_{X}. Let $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$, and assume the sets $\left\{X_{i}\right\}$ and $\left\{\epsilon_{i}\right\}$ are independent. Let

$$
Y_{i}=\int_{0}^{1} X_{i}(t) \beta(t) d t+\epsilon_{i}, \quad i=1, \ldots, n
$$

(a) Assume an orthonormal basis of fixed basis functions $\left\{B_{k}\right\}_{k=1}^{\infty}$ of $L^{2}[0,1]$. For some $K \in \mathbb{N}$, let $\beta(t)$ be expressed as a truncated sum of the basis functions $\beta(t)=\sum_{k=1}^{K} c_{k} B_{k}(t)$. This truncation is an approximation to $\beta(t)=\sum_{k=1}^{\infty} c_{k} B_{k}(t)$.
(i) Find the bias from the least squares estimator using the approximation and for K fixed, show that, in general, it is not consistent as $n \rightarrow \infty$.
[You may use without proof that for a suitably chosen matrix $\tilde{X}, \frac{1}{n} \tilde{X}^{T} \epsilon \xrightarrow{p}$ 0 and $\frac{1}{n} \tilde{X}^{T} \tilde{X} \xrightarrow{p} \Sigma_{\tilde{X}}$ for some positive definite matrix $\left.\Sigma_{\tilde{X}}\right]$.
(ii) If C_{X} is known, explain (briefly) the difference if the fixed basis functions $\left\{B_{k}(t)\right\}_{k=1}^{\infty}$ were chosen as the eigenbasis of C_{X}.
(b) Assume $\left\{B_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis of $L^{2}[0,1]$ with second derivatives, and for some fixed $K \in \mathbb{N}$, let $\beta(t)=\sum_{k=1}^{K} c_{k} B_{k}(t)$. For some $\rho \in \mathbb{R}$, let the loss function L,

$$
L(\beta)=\sum_{i=1}^{n}\left|Y_{i}-\left\langle X_{i}, \beta\right\rangle\right|^{2}+\rho\left\|\beta^{\prime \prime}\right\|^{2},
$$

where $\beta^{\prime \prime}(t)$ is the second derivative of $\beta(t)$.
Find an estimator for the coefficients c_{k}, which minimize the loss function L. [You may assume it is possible to calculate $\left\langle X_{i}, B_{k}\right\rangle$].

END OF PAPER

