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(a) Suppose X,Y are independent RVs with values in A = {0, 1, . . .}. Show that
H(X + Y ) > max{H(X), H(Y )}.

(b) Suppose X has PMF PX and mean µ > 0 on A and let Z be an independent
geometric with mean µ, i.e., with parameter p = 1

1+µ and PMF PZ(k) = p(1− p)k,
k > 0. Using the result of part (a) show that,

D(PX‖PZ) 6 2dR(X,Z),

where dR(X,Z) is the Ruzsa distance between X and Z:

dR(X,Z) := H(X − Z)− 1

2
H(X)− 1

2
H(Z).

(c) Suppose X has PMF PX on A with PX(0) = 0, let q :=∑∞
k=0min {PX(k), PX(k + 1)}, and write PX−1 for the PMF of X − 1 on A.

Show that,
‖PX − PX−1‖TV = 2(1− q).

(d) With X as in part (c), use the result of part (c) to show that:

2−2H(X)+1 6 (loge 2)D(PX‖PX−1).

Hint. Find an upper bound for q and a lower bound for H(X), both in terms of
maxk PX(k).
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2 Let A be a finite alphabet and Q be a PMF on A.

(a) Let xn1 be a string in An. Define its type P = P̂xn
1
, define the type class T (P ), and

state an upper bound for the probability Qn(T (P )).

Let B be an arbitrary nonempty subset of An. In the next five parts you will
establish a corresponding upper bound for Qn(B).

(b) Suppose that Y n
1 = (Y1, Y2, . . . , Yn) are independent and identically distributed with

each Yi ∼ Q, and that Xn
1 are distributed as Y n

1 conditional on Y n
1 ∈ B. Write

down a formula for the joint PMF Pn of Xn
1 .

(c) Let J be uniformly distributed on {1, 2, . . . , n}, independent of Y n
1 . Derive a formula

for the PMF P̄ of XJ in terms of the types P̂xn
1

of the strings xn1 ∈ B.

(d) Show that H(Xn
1 ) 6 nH(P̄ ).

(e) Show that:
∑

xn
1∈B

Qn(xn1 )

Qn(B)
logQn(xn1 ) = n

∑

x∈A
P̄ (x) logQ(x).

(f) Using parts (b), (d) and (e) show that: Qn(B) 6 2−nD(P̄‖Q).

3

(a) State Kraft’s inequality for prefix-free free codes (Cn, Ln) on An for a finite alphabet
A.

(b) State and prove both the direct and converse parts of the codes-distributions
correspondence.

(c) Let Xn
1 = (X1, . . . , Xn) be random variables with values in the finite alphabet A,

and let W (xn1 ) denote the “weight” of a string xn1 ∈ An for some fixed weight
function W : An → (0,∞). Find the smallest achievable value of the average
weighted description length, E[W (Xn

1 )Ln(Xn
1 )], among all prefix-free codes, ignoring

integer codelength constraints. Describe the length function L∗
n that achieves that

minimum.
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(a) Suppose X1, X2, . . . , Xn are (not necessarily independent) Bernoulli random vari-
ables (RVs), and let Sn = X1 + · · · + Xn. State and prove a Poisson approx-
imation bound for the PMF PSn of Sn. You may assume, without proof, that
De(Bern(q)‖Po(q)) 6 q2.

(b) Let {X(n)
i } = {(X(n)

1 , X
(n)
2 , . . . , X

(n)
n ) ; n > 1} be a triangular array of independent

Bernoulli RVs, where, for each row n > 1, the RVs (X
(n)
1 , X

(n)
2 , . . . , X

(n)
n ) are IID

Bern(λ/n) for some fixed λ > 0 independent of n.

Let Pn denote the joint PMF of (X
(n)
1 , X

(n)
2 , . . . , X

(n)
n ), n > 1. Find a sequence

of constants {cn} and a RV Z such that the following version of the asymptotic
equipartition property holds in this case: As n→∞:

− 1

cn
logPn(X

(n)
1 , X

(n)
2 , . . . , X(n)

n )→ Z in distribution.

You may assume the following without proof: If {Zn} and Z are RVs and {an}
and {bn} are sequences of real numbers such that, as n → ∞, (i) the PMFs PZn

of Zn converge to the PMF PZ of Z in that ‖PZn − PZ‖TV → 0, (ii) an → 1, and
(iii) bn → 0, then anZn + bn → Z in distribution, as n→∞.
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