MAT3

MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2023 9:00 am to 11:00 am

PAPER 224

INFORMATION THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.
Attempt no more than THREE questions.
There are FOUR questions in total.
The questions carry equal weight.

[^0]> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1
(a) Suppose X, Y are independent RVs with values in $A=\{0,1, \ldots\}$. Show that $H(X+Y) \geqslant \max \{H(X), H(Y)\}$.
(b) Suppose X has PMF P_{X} and mean $\mu>0$ on A and let Z be an independent geometric with mean μ, i.e., with parameter $p=\frac{1}{1+\mu}$ and PMF $P_{Z}(k)=p(1-p)^{k}$, $k \geqslant 0$. Using the result of part (a) show that,

$$
D\left(P_{X} \| P_{Z}\right) \leqslant 2 d_{R}(X, Z)
$$

where $d_{R}(X, Z)$ is the Ruzsa distance between X and Z :

$$
d_{R}(X, Z):=H(X-Z)-\frac{1}{2} H(X)-\frac{1}{2} H(Z) .
$$

(c) Suppose X has PMF P_{X} on A with $P_{X}(0)=0$, let $q:=$ $\sum_{k=0}^{\infty} \min \left\{P_{X}(k), P_{X}(k+1)\right\}$, and write P_{X-1} for the PMF of $X-1$ on A. Show that,

$$
\left\|P_{X}-P_{X-1}\right\|_{\mathrm{TV}}=2(1-q) .
$$

(d) With X as in part (c), use the result of part (c) to show that:

$$
2^{-2 H(X)+1} \leqslant\left(\log _{e} 2\right) D\left(P_{X} \| P_{X-1}\right) .
$$

Hint. Find an upper bound for q and a lower bound for $H(X)$, both in terms of $\max _{k} P_{X}(k)$.

2 Let A be a finite alphabet and Q be a PMF on A.
(a) Let x_{1}^{n} be a string in A^{n}. Define its type $P=\hat{P}_{x_{1}^{n}}$, define the type class $T(P)$, and state an upper bound for the probability $Q^{n}(T(P))$.

Let B be an arbitrary nonempty subset of A^{n}. In the next five parts you will establish a corresponding upper bound for $Q^{n}(B)$.
(b) Suppose that $Y_{1}^{n}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ are independent and identically distributed with each $Y_{i} \sim Q$, and that X_{1}^{n} are distributed as Y_{1}^{n} conditional on $Y_{1}^{n} \in B$. Write down a formula for the joint PMF P_{n} of X_{1}^{n}.
(c) Let J be uniformly distributed on $\{1,2, \ldots, n\}$, independent of Y_{1}^{n}. Derive a formula for the PMF \bar{P} of X_{J} in terms of the types $\hat{P}_{x_{1}^{n}}$ of the strings $x_{1}^{n} \in B$.
(d) Show that $H\left(X_{1}^{n}\right) \leqslant n H(\bar{P})$.
(e) Show that:

$$
\sum_{x_{1}^{n} \in B} \frac{Q^{n}\left(x_{1}^{n}\right)}{Q^{n}(B)} \log Q^{n}\left(x_{1}^{n}\right)=n \sum_{x \in A} \bar{P}(x) \log Q(x) .
$$

(f) Using parts $(b),(d)$ and (e) show that: $Q^{n}(B) \leqslant 2^{-n D(\bar{P} \| Q)}$.

3
(a) State Kraft's inequality for prefix-free free codes $\left(C_{n}, L_{n}\right)$ on A^{n} for a finite alphabet A.
(b) State and prove both the direct and converse parts of the codes-distributions correspondence.
(c) Let $X_{1}^{n}=\left(X_{1}, \ldots, X_{n}\right)$ be random variables with values in the finite alphabet A, and let $W\left(x_{1}^{n}\right)$ denote the "weight" of a string $x_{1}^{n} \in A^{n}$ for some fixed weight function $W: A^{n} \rightarrow(0, \infty)$. Find the smallest achievable value of the average weighted description length, $\mathbb{E}\left[W\left(X_{1}^{n}\right) L_{n}\left(X_{1}^{n}\right)\right]$, among all prefix-free codes, ignoring integer codelength constraints. Describe the length function L_{n}^{*} that achieves that minimum.

4
(a) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are (not necessarily independent) Bernoulli random variables (RVs), and let $S_{n}=X_{1}+\cdots+X_{n}$. State and prove a Poisson approximation bound for the PMF $P_{S_{n}}$ of S_{n}. You may assume, without proof, that $D_{e}(\operatorname{Bern}(q) \| \operatorname{Po}(q)) \leqslant q^{2}$.
(b) Let $\left\{X_{i}^{(n)}\right\}=\left\{\left(X_{1}^{(n)}, X_{2}^{(n)}, \ldots, X_{n}^{(n)}\right) ; n \geqslant 1\right\}$ be a triangular array of independent Bernoulli RVs, where, for each row $n \geqslant 1$, the RVs $\left(X_{1}^{(n)}, X_{2}^{(n)}, \ldots, X_{n}^{(n)}\right)$ are IID $\operatorname{Bern}(\lambda / n)$ for some fixed $\lambda>0$ independent of n.
Let P_{n} denote the joint PMF of $\left(X_{1}^{(n)}, X_{2}^{(n)}, \ldots, X_{n}^{(n)}\right), n \geqslant 1$. Find a sequence of constants $\left\{c_{n}\right\}$ and a RV Z such that the following version of the asymptotic equipartition property holds in this case: As $n \rightarrow \infty$:

$$
-\frac{1}{c_{n}} \log P_{n}\left(X_{1}^{(n)}, X_{2}^{(n)}, \ldots, X_{n}^{(n)}\right) \rightarrow Z \quad \text { in distribution. }
$$

You may assume the following without proof: If $\left\{Z_{n}\right\}$ and Z are RVs and $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences of real numbers such that, as $n \rightarrow \infty$, (i) the PMFs $P_{Z_{n}}$ of Z_{n} converge to the PMF P_{Z} of Z in that $\left\|P_{Z_{n}}-P_{Z}\right\|_{\mathrm{TV}} \rightarrow 0$, (ii) $a_{n} \rightarrow 1$, and (iii) $b_{n} \rightarrow 0$, then $a_{n} Z_{n}+b_{n} \rightarrow Z$ in distribution, as $n \rightarrow \infty$.

END OF PAPER

[^0]: STATIONERY REQUIREMENTS
 SPECIAL REQUIREMENTS
 Cover sheet
 None
 Treasury tag
 Script paper
 Rough paper

