MAMA/224, NST3AS/224, MAAS/224

MAT3 MATHEMATICAL TRIPOS Part III

Wednesday, 7 June, 2023 9:00 am to 11:00 am

PAPER 224

INFORMATION THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

 $\mathbf{1}$

- (a) Suppose X, Y are independent RVs with values in $A = \{0, 1, ...\}$. Show that $H(X+Y) \ge \max\{H(X), H(Y)\}.$
- (b) Suppose X has PMF P_X and mean $\mu > 0$ on A and let Z be an independent geometric with mean μ , i.e., with parameter $p = \frac{1}{1+\mu}$ and PMF $P_Z(k) = p(1-p)^k$, $k \ge 0$. Using the result of part (a) show that,

$$D(P_X || P_Z) \leqslant 2d_R(X, Z),$$

where $d_R(X, Z)$ is the *Ruzsa distance* between X and Z:

$$d_R(X,Z) := H(X-Z) - \frac{1}{2}H(X) - \frac{1}{2}H(Z).$$

(c) Suppose X has PMF P_X on A with $P_X(0) = 0$, let $q := \sum_{k=0}^{\infty} \min \{P_X(k), P_X(k+1)\}$, and write P_{X-1} for the PMF of X - 1 on A. Show that,

$$||P_X - P_{X-1}||_{\mathrm{TV}} = 2(1-q)$$

(d) With X as in part (c), use the result of part (c) to show that:

$$2^{-2H(X)+1} \leq (\log_e 2)D(P_X || P_{X-1}).$$

Hint. Find an upper bound for q and a lower bound for H(X), both in terms of $\max_k P_X(k)$.

2 Let A be a finite alphabet and Q be a PMF on A.

(a) Let x_1^n be a string in A^n . Define its type $P = \hat{P}_{x_1^n}$, define the type class T(P), and state an upper bound for the probability $Q^n(T(P))$.

Let B be an arbitrary nonempty subset of A^n . In the next five parts you will establish a corresponding upper bound for $Q^n(B)$.

- (b) Suppose that $Y_1^n = (Y_1, Y_2, \ldots, Y_n)$ are independent and identically distributed with each $Y_i \sim Q$, and that X_1^n are distributed as Y_1^n conditional on $Y_1^n \in B$. Write down a formula for the joint PMF P_n of X_1^n .
- (c) Let J be uniformly distributed on $\{1, 2, ..., n\}$, independent of Y_1^n . Derive a formula for the PMF \overline{P} of X_J in terms of the types $\hat{P}_{x_1^n}$ of the strings $x_1^n \in B$.
- (d) Show that $H(X_1^n) \leq nH(\bar{P})$.
- (e) Show that:

$$\sum_{x_1^n\in B}\frac{Q^n(x_1^n)}{Q^n(B)}\log Q^n(x_1^n)=n\sum_{x\in A}\bar{P}(x)\log Q(x).$$

(f) Using parts (b), (d) and (e) show that: $Q^n(B) \leq 2^{-nD(\bar{P}||Q)}$.

3

- (a) State Kraft's inequality for prefix-free free codes (C_n, L_n) on A^n for a finite alphabet A.
- (b) State and prove both the direct and converse parts of the codes-distributions correspondence.
- (c) Let $X_1^n = (X_1, \ldots, X_n)$ be random variables with values in the finite alphabet A, and let $W(x_1^n)$ denote the "weight" of a string $x_1^n \in A^n$ for some fixed weight function $W : A^n \to (0, \infty)$. Find the smallest achievable value of the average weighted description length, $\mathbb{E}[W(X_1^n)L_n(X_1^n)]$, among all prefix-free codes, ignoring integer codelength constraints. Describe the length function L_n^* that achieves that minimum.

 $\mathbf{4}$

- (a) Suppose X_1, X_2, \ldots, X_n are (not necessarily independent) Bernoulli random variables (RVs), and let $S_n = X_1 + \cdots + X_n$. State and prove a Poisson approximation bound for the PMF P_{S_n} of S_n . You may assume, without proof, that $D_e(\text{Bern}(q) \| \text{Po}(q)) \leq q^2$.
- (b) Let $\{X_i^{(n)}\} = \{(X_1^{(n)}, X_2^{(n)}, \dots, X_n^{(n)}); n \ge 1\}$ be a triangular array of independent Bernoulli RVs, where, for each row $n \ge 1$, the RVs $(X_1^{(n)}, X_2^{(n)}, \dots, X_n^{(n)})$ are IID Bern (λ/n) for some fixed $\lambda > 0$ independent of n.

Let P_n denote the joint PMF of $(X_1^{(n)}, X_2^{(n)}, \ldots, X_n^{(n)})$, $n \ge 1$. Find a sequence of constants $\{c_n\}$ and a RV Z such that the following version of the asymptotic equipartition property holds in this case: As $n \to \infty$:

$$-\frac{1}{c_n}\log P_n(X_1^{(n)}, X_2^{(n)}, \dots, X_n^{(n)}) \to Z \quad \text{in distribution.}$$

You may assume the following without proof: If $\{Z_n\}$ and Z are RVs and $\{a_n\}$ and $\{b_n\}$ are sequences of real numbers such that, as $n \to \infty$, (i) the PMFs P_{Z_n} of Z_n converge to the PMF P_Z of Z in that $||P_{Z_n} - P_Z||_{\text{TV}} \to 0$, (ii) $a_n \to 1$, and (iii) $b_n \to 0$, then $a_n Z_n + b_n \to Z$ in distribution, as $n \to \infty$.

END OF PAPER