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Suppose (X1, X2, X3, X4, U) satisfies the causal model corresponding to the follow-
ing graph. Suppose X1, . . . , X4 are observed (indicated by solid circles) and U is unob-
served (indicated by the dashed circle).

X1 X2 X3 X4

U

(i) State the d-separation criterion, and then use it to conclude that the graph implies
no conditional independence relationships between the observed variables, that is,
for all disjoint subsets I,J ,K ⊂ {1, 2, 3, 4}, XI ⊥⊥ XJ | XK is generally not true.

(ii) Suppose X1, . . . , X4, U are all discrete. Show that

∑

x2

p(x4 | x1, x2, x3)p(x2 | x1) does not depend on x1,

where p(x4 | x1, x2, x3) is the conditional probability of X4 = x4 given X1 =
x1, X2 = x2, X3 = x3, and p(x2 | x1) is the conditional probability of X2 = x2
given X1 = x1.

(iii) Now suppose X1, X2, X3 are all binary. Derive identification formulas for the average
treatment effects

E (X4(Xj = 1)−X4(Xj = 0)) for j = 1, 2, 3,

where X4(Xj = xj) is the potential outcome of X4 when Xj is set to xj .
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Consider the problem of inferring the causal effect of a binary treatment variable A
on a real-valued outcome variable Y . Let X be some observed covariate. Let Y (a) be the
potential outcome when A is set to a = 0, 1.

(i) State the no unmeasured confounders assumption. Show that undet this assump-
tion, and additionally other sensible assumptions that you should state carefully,
the average treatment effect on the treated (ATT) is identified by

E(Y (1)− Y (0) | A = 1) = E(Y | A = 1)− E(π(X)µ(X))

E(π(X))
, (1)

where π(X) = P(A = 1 | X) and µ(X) = E(Y | A = 0, X).

(ii) Assuming X is discrete, show that the influence curve for the functional β =
E(π(X)µ(X)) is given by

(1−A)
π(X)

1− π(X)
(Y − µ(X)) +Aµ(X)− β.

[You may use any results given in the lectures. In particular, it may be useful to
know that the influence curve of E(Y | X = x) (for fixed x) is given by

1{X=x}
P(X = x)

· (Y − E(Y | X = x)).]

(iii) Given an i.i.d. sample (Xi, Ai, Yi), i = 1, . . . , n, use the above results to suggest an
estimator of the right hand side of (1).
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You may assume all random variables in this question are discrete.

Consider a random vector X = (X1, . . . , Xp) and the subvector

S =




X1

XM
XN


 ,

where M and N are disjoint subsets of {2, . . . , p}. We say XM is a “Markov blanket” of
X1 in S if X1 ⊥⊥ XN | XM. In this context, we refer to the cardinality of M as the size
of Markov blanket.

(i) Suppose X factorizes according to the directed acyclic graph below. Show that a
Markov blanket of X1 in X is (X2, X3, X4).

X1

X2

X3

X4

X5

X6

(ii) Suppose X factorizes according to and is faithful to a directed acyclic graph G.
Describe, with justification, the smallest Markov blanket of X1 in X.

(iii) State the definition of conditional independence for random variables and use it
to prove the contraction axiom: if A,B,C,D are random vectors that satisfy
A ⊥⊥ B | D and A ⊥⊥ C | (B,D), then A ⊥⊥ (B,C) | D.

(iv) Suppose we are interested in estimating the causal effect of an intervention on a
random variable A on another variable Y . Suppose X is a suffcient adjustment set
in the sense that Y (a) ⊥⊥ A | X where Y (a) is the potential outcome of Y under
the intervention A = a. Show that any Markov blanket of A in (A,X) is also a
sufficient adjustment set.
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Consider the following randomized encouragement trial to evaluate the causal effect
of smoking cessation on blood pressure. The experimenter randomly assigns each smoker
who participate in this trial to the treatment group or the control group by flipping a
fair coin. Subjects in both groups receive a leaflet about the health risks of smoking, but
the subjects in the treatment group receive an incentive of £1, 000 if they quit smoking.
After a year, we measure the blood pressure of all trial participants. (For this question,
we assume that subjects who quit smoking do not resume smoking in this period.)

Let Z denote the treatment assignment: Z = 1 means the subject is in the treatment
group and Z = 0 means the control group. Let A be the indicator for quitting smoking
and Y be the blood pressure. You may treat the random variables corresponding to each
subject as i.i.d.

(i) Often, the randomized encouragement Z is used as an instrumental variable for the
exposure of interest A. Draw the causal graph for what this means and write down
the assumptions using potential outcomes. Explain what these assumptions mean
in the context of the trial desribed above.

For the rest of this question you may assume Z is a valid instrumental variable for
A.

(ii) Use potential outcomes to describe the monotonicity assumption that the possibility
of receiving £1, 000 should only motivate the subjects to quit smoking. Then use it
to prove that the complier average treatment effect of A on Y is identified by the
Wald ratio

E(Y | Z = 1)− E(Y | Z = 0)

E(A | Z = 1)− E(A | Z = 0)
.

(iii) Suppose U is an unobserved, common cause of A and Y , and there are no other
confounders apart from U . Show that the (overall) average treatment effect of A on
Y is also identified by the Wald ratio if there is no confounder-instrument interaction
in determining the exposure in the sense that

E(A | Z = 1, U)− E(A | Z = 0, U)

does not depend on U .

END OF PAPER
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