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1 In a normal linear model, the observations Y ∈ Rn have a N(Xβ,Σε) distribution,
where X ∈ Rn×p is a fixed design matrix, and β ∈ Rp is a parameter of interest. We assign
a prior distribution N(0,Σ) to the parameter β where Σ has full rank.

(a) Find the posterior distribution of β.

(b) Suppose that Σε = σ2αIn and Σ = σ2Ip for some constant α > 0. We wish
to estimate the hyperparameter σ̂2 by Empirical Bayes. Find its maximum marginal
likelihood estimator.

(c) Let B = {x ∈ Rp : |x| 6 1} be the unit ball in Rp. Consider a formal decision
problem with decision space B and utility function defined by U∗(x, β) = (xTβ)2 for any
x ∈ B. What is the Bayes decision rule?

(d) Now suppose that Σε = In and Σ is an arbitrary positive definite matrix. A
statistical method requires drawing one sample from the posterior distribution of β given
the first i observations (Y1, . . . , Yi), for each integer i = 1, . . . , n. Describe an algorithm
to do this with a computational complexity O(p3 + np2 + n2p).

(e) Let G = (V,E) be a phylogenetic tree, where each vertex represents a genetic
variant of a virus. The edges E are directed from a root vertex v0 ∈ V to the leaves of the
tree, where each edge (v, v′) ∈ E points from an older variant v to a more recent variant
v′. The function a : V \ {v0} → V maps a variant to its most recent ancestor, i.e., a(v) is
the unique vertex with (a(v), v) ∈ E.

For each variant i ∈ V , the observation Yi measures the variant’s reproductive rate
in an animal model. We model the observations as i.i.d. with distribution

log Yi | βi, τ ∼ N(βi, 1/τ).

We place a prior on the parameters β = (βi : i ∈ V ) and τ with the following density with
respect to the Lebesgue measure:

π(β, τ) ∝ exp


−τ +

∑

i∈V,i 6=v0

−Ji(βi − βa(i))2 − c‖β‖2

 ,

where c > 0 and Ji > 0 for i ∈ V are constant.

Consider a systematic scan Gibbs sampler targeting the posterior distribution of
(β, τ). Find the complete conditional distributions π(β | Y, τ) and π(τ | Y, β). How does
the computational complexity of each iteration scale with the number of variants n = |V |?

[Hint: Let G = ({1, . . . , n}, E) be a tree, and suppose that a positive definite matrix
M ∈ Rn×n has Mi,j 6= 0 if and only if {i, j} ∈ E. A Cholesky decomposition M = LLT

may be computed in O(n) FLOPs. In addition, L has O(n) non-zero entries.]
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2 (a) Let π be a probability measure on (Rd,B) where B is the Borel σ-algebra. Let
K be a π-reversible Markov kernel. Define what it means for a Markov chain with kernel
K to be geometrically ergodic.

Define what it means for a set A ∈ B to be α-small in the Markov chain. Give
sufficient drift–minorisation conditions for the Markov chain to be geometrically ergodic.

(b) Consider an exponential family likelihood

f(x | θ) = exp(T (x)T θ − Z(θ))

with parameter θ ∈ Rd and sufficient statistic T . We assign the natural conjugate prior
to θ:

π(θ) = exp(θTλ1 − Z(θ)λ2 − Z̃(λ))

where λ1 ∈ Rd and λ2 > 0 and λ = (λT1 , λ2)
T .

What is the posterior distribution π(θ | x)? What is the Bayes estimator, θ̂, for the
parameter θ under the quadratic loss? Express your answer in terms of Z̃.

(c) Let µ be the density in Rd

µ(θ) = exp(θTλ1 − F (θ)λ2 − F̃ (λ))

where F : Rd → R satisfies |F (θ)−Z(θ)| < C <∞ for all θ ∈ Rd. Consider a Metropolis–
Hastings algorithm targeting the prior distribution π with proposal kernel q(θ, ·) = µ(·)
for all θ ∈ Rd. Prove that this Markov chain is geometrically ergodic.
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3 Let K be a Markov kernel on (X ,B) with stationary distribution π.

(a) Define the asymptotic variance of the Markov chain Monte Carlo estimator for
π(ψ) for some function ψ ∈ L2(π). State an upper bound on the asymptotic variance in
terms of the Markov chain’s spectral gap.

(b) Show that the operator K : L2(π)→ L2(π) defined by Kf(x) =
∫
f(y)K(x, dy)

is self-adjoint if the Markov kernel is reversible.

(c) The discrete-time Dirichlet energy associated to K is defined by EK(f) =
〈f, (I −K)f〉π. Prove that

EK(f) =
1

2
E
(
(f(X2)− f(X1))

2
)
,

where (X1, X2) is a Markov chain with kernel K and X1 ∼ π.

(d) Suppose that K is π-reversible. We say that K satisfies a discrete-time Poincaré
inequality with constant C ∈ (0,∞) if, for all f ∈ L2(π),

Varπ(f) 6 CEK2(f).

Prove that this inequality holds if and only if, for all integers t > 0, and all f ∈ L2(π),

Varπ(Ktf) 6
(

1− 1

C

)t
Varπ(f).

(e) Let K and Q be two different, π-reversible Markov kernels. Suppose that for
any x ∈ X and any measurable set A ∈ B with x /∈ A, we have K(x,A) > Q(x,A). Using
part (c), prove that EK(f) > EQ(f) for all f ∈ L2(π).

Suppose further that K and Q have a positive spectrum, so there exist projection
valued measures SK and SQ such that K =

∫ 1
0 λSK(dλ) and Q =

∫ 1
0 λSQ(dλ).

By considering the operators
∫ 1
0

√
λSK(dλ) and

∫ 1
0

√
λSQ(dλ), or otherwise, prove

an inequality relating the spectral gaps of K and Q. [You may cite any result from the
course.]
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4 (a) Define the Hamiltonian Monte Carlo algorithm targeting a probability distri-
bution π in Rd. [You may reference the Leapfrog iteration without definition.]

(b) Let (Xt)t>0 be an Itô diffusion process solving the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt.

Fix D(x) = σ(x)σ(x)T

2 , and let

b(x) = −[D(x) +Q(x)]∇H(x) + Γ(x),

Γi(x) =

d∑

j=1

∂

∂xj
(Dij(x) +Qij(x)),

where bi +
∑d

j=1
∂
∂xj

Dij is π-integrable for each i.

State necessary and sufficient conditions such that the diffusion process (Xt)t>0 has
stationary distribution π.

(c) The Underdamped Langevin Dynamics is a diffusion process (Xt, Pt)t>0 which
solves the stochastic differential equation:

dPt = −γPtdt− η∇U(Xt)dt+ (
√

2γη)dBt

dXt = Ptdt,

where Xt and Pt take values in Rd, (Bt)t>0 is a d-dimensional Brownian motion, and
γ, η > 0 are constants.

Find the stationary distribution of (Xt, Pt)t>0. [Hint: Use part (b) with Q(x) not
depending x.]

Define the Euler–Maruyama discretisation of this process with step size δ.

END OF PAPER
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