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1

Consider a one period model of n assets with prices (Pt)t∈{0,1} and no dividends.

(a) What does it mean to say a vector H ∈ Rn is an arbitrage? a terminal consumption
arbitrage?

(b) What does it mean to say a vector η ∈ Rn is a numéraire portfolio? Prove that
if there exist both an arbitrage and a numéraire portfolio, then there exists a terminal
consumption arbitrage.

Henceforth, suppose that P1 has the normal distribution with mean vector µ and
covariance matrix V . Let

A = {V x : x ∈ Rn} ⊆ Rn

be the image of V .

(c) Show that if A = Rn then there is no arbitrage.

(d) Show that if there exists a numéraire portfolio, then a risk-free bond can be replicated.

(e) Suppose there exists a numéraire portfolio η and let

r =
η · µ
η · P0

− 1.

Show that there is no arbitrage if and only if µ− (1 + r)P0 ∈ A.
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2 Consider a one-period model of n assets with prices (Pt)t∈{0,1} and no dividends.

(a) What does it mean to say Y = (Yt)t∈{0,1} is a martingale deflator for the model?
Show that if Y 0, Y 1 are martingale deflators and ε0, ε1 are positive real constants, then
ε0Y 0 + ε1Y 1 is also a martingale deflator.

Now assume that there exists at least one martingale deflator.

(b) Let ξ0 be a real number and ξ1 a random variable such that E(ξ1Y1) < ξ0Y0 for every
martingale deflator Y . Use the one-period fundamental theorem of asset pricing to show
that there exists a portfolio H ∈ Rn such that

H · P0 6 ξ0 and H · P1 > ξ1 almost surely.

(c) Let ξ0 be a real number and ξ1 a random variable such that E(ξ1Y1) 6 ξ0Y0 for every
martingale deflator Y , with equality for at least one such Y . Show that there exists a
portfolio H ∈ Rn such that

H · P0 = ξ0 and H · P1 = ξ1 almost surely.

Now let X0 > 0 be a fixed initial wealth and let u : (0,∞)→ R be smooth, strictly
increasing, strictly concave utility function with

lim
x↓0

u′(x) =∞ and lim
x↑∞

u′(x) = 0.

For each y > 0, let
û(y) = max

x>0
{u(x)− xy}.

(d) Show that
E[u(H · P1)] 6 E[û(Y1)] +X0Y0

for all martingale deflators Y and for all H ∈ Rn such that H · P0 = X0. Show that there
is equality if u′(H · P1) = Y1 almost surely.

(e) Let Y ∗ minimise the quantity E[û(Y1)] + X0Y0 among all martingale deflators Y . By
considering the expression E[û(Y ∗1 + εY1)] +X0(Y

∗
0 + εY0) or otherwise, show that

E[û′(Y ∗1 )Y1] +X0Y0 > 0

for all martingale deflators Y , with equality if Y = Y ∗. [You may pass derivatives inside
expectations without justification.] Conclude that there exists an H∗ ∈ Rn such that
H∗ · P0 = X0 and

E[u(H∗ · P1)] = E[û(Y ∗1 )] +X0Y
∗
0 .

[Hint: check that y = u′(x) if and only if x = −û′(y). ]
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Consider a discrete-time market with a family of risk-free bonds of maturity T for
T ∈ T and time-t price P T

t , an asset with time-t price St, and a family of European call
options of maturity T ∈ T and strikes K ∈ K written on the asset with time-t price CT,K

t ,
where T = {1, 2, . . . , TM} and K = {K1, . . . ,KN} are given finite sets. Assume that there
is no arbitrage. Throughout this question you may not use the fundamental theorem of
asset pricing.

(a) By considering the stopping time

τ = inf{t > 0 : P T
t 6 0}

show that P T
t > 0 almost surely for all 0 6 t < T .

(b) Show that K 7→ CT,K
t is non-increasing almost surely for all 0 6 t < T .

(c) Consider the case where the asset pays no dividend and P t
t−1 6 1 almost surely for all

t ∈ T . Show in this case that T 7→ CT,K
t is non-decreasing for all K ∈ K and 0 6 t < TM .

(d) Fix T ∈ T and consider a European contingent claim with time-T payout ξT = g(ST ).
Show, in the case that ST ∈ K almost surely, that the time-t no-arbitrage price of the
claim is

πt = g(K1)P
T
t +

N∑

i=2

g(Ki)− g(Ki−1)

Ki −Ki−1
(C

T,Ki−1

t − CT,Ki
t ).
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4 Consider a market with a bank account and one stock. The risk-free interest rate
is a constant r and the stock price process S is positive and evolves as

dSt = St µ dt+ St σ dWt

where W is a Brownian motion and µ and σ are real constants with σ > 0. Given x ∈ R
and a (sufficiently integrable) previsible process θ let Xx,θ be the time-t wealth of a self-
financing investor who has initial wealth x and holds θt shares of the stock at time t. Fix
a non-random time horizon T > 0.

(a) Show that

dXx,θ
t = r(Xt − θtSt)dt+ θtdSt.

(b) Show that there is a risk-neutral measure Q with density

dQ
dP

= e−λ
2T/2−λWT

for a constant λ to be determined in terms of the constants µ, r, σ.

(c) Fix a bounded smooth function g, and let

x =

∫ ∞

−∞
e−rT g(S0e

(r−σ2/2)T+σ
√
Tz)ϕ(z)dz

and

θt =

∫ ∞

−∞
g′(Ste(r+σ

2/2)(T−t)+σ
√
T−tz)ϕ(z)dz

for 0 6 t 6 T , where ϕ(z) = 1√
2π
e−z

2/2 is the standard normal density. Show that

Xx,θ
T = g(ST ).

[You may use standard results from stochastic calculus without justification. You may
assume that any PDE that you encounter of the form

∂V

∂t
+ LV = 0,

where L is a differential operator, has a unique bounded smooth solution such that
V (T, ·) = g(·). ]

END OF PAPER
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