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1 Given a distribution function F on R, define the quantile function F−1 : (0, 1] →
(−∞,∞].

Let X1, . . . , Xn
iid∼ F . Define the empirical distribution function Fn and, for j ∈ [n],

define the jth order statistic X(j). Express X(j) in terms of F−1
n , evaluated at an

appropriate point.

State and prove Bennett’s inequality.

Let U1, . . . , Un
iid∼ U [0, 1]. For j ∈ [n], state the distribution of the jth order statistic

U(j), as well as E(U(j)). Prove that

P
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n + 1
6 −x

)
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for every x ∈
[
0, j

n+1

)
, where p := j

n+1 − x ∈
(
0, j

n+1

]
.

2 For β, L > 0, define the Hölder class F(β, L) of densities on R. In the context
of kernel density estimation, define what is meant by a kernel, and define the order of a
kernel.

Let X1, . . . , Xn
iid∼ f ∈ F(β, L) and let F̂n denote the set of Borel measurable

functions from R × Rn to R. Prove that there exists C > 0, depending only on β, such
that

inf
f̂n∈F̂n

sup
x∈R

sup
f∈F(β,L)

Ef
[{
f̂n(x;X1, . . . , Xn)− f(x)

}2] 6 CL2/(β+1)n−2β/(2β+1).

[You may assume the existence of a bounded kernel K of arbitrarily large order satisfying∫∞
−∞ |u|β|K(u)| du <∞.]
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3 Consider a vector Y = (Y1, . . . , Yn)> of responses from the nonparametric regression
model

Yi = m(xi) + εi,

where xi = i/n for i ∈ [n], where m : [0, 1] → R and where ε1, . . . , εn are independent
with E(εi) = 0 and Var(εi) 6 σ2 for i ∈ [n]. Fix x ∈ (0, 1), let K denote a bounded
kernel that vanishes outside [−1, 1], let p ∈ N0 and let h > 0. Show that, for suitable
matrices X ∈ Rn×(p+1) and W ∈ Rn×n, and subject to a positive definiteness condition
that you should state and then assume throughout, the local polynomial estimator of m(x)
of degree p, bandwidth h and kernel K can be expressed as an appropriate component of
β̂ = (β̂0, β̂1, . . . , β̂p)

>, where β̂ = (X>WX)−1X>WY .

Now suppose that m is differentiable and consider m̂′n(x) := β̂1/h as an estimator
of m′(x). Writing m̂′n(x) = n−1

∑n
i=1 vp,i(x)Yi, prove that whenever R is a polynomial of

degree at most p, we have

1

n

n∑

i=1

vp,i(x)R(xi) = R′(x).

Prove further that, for a suitable λ0 > 0,

max
i∈[n]

1

n
|vp,i(x)| 6 2‖K‖∞

λ0nh2

and
1

n

n∑

i=1

|vp,i(x)| 6 2‖K‖∞
λ0nh2

n∑

i=1

1{|xi−x|6h}.

Finally, assume that m belongs to the Hölder class H(β, L) for some β > 1 and
L > 0. Prove that when p > dβe − 1 and h > 1/(2n), we have

Var m̂′n(x) 6 16‖K‖2∞σ2
λ20nh

3
and

∣∣Bias m̂′n(x)
∣∣ 6 8L‖K‖∞

λ0β0!
hβ−1.
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4 Let P and Q denote probability measures on a common measurable space. Define
the total variation distance TV(P,Q) and the Kullback–Leibler divergence KL(P,Q).

For µ ∈ R, write Laplace(µ) for the Laplace distribution with mean µ, having density
x 7→ e−|x−µ|/2 with respect to Lebesgue measure on R. Prove that if P = Laplace(0) and
Q = Laplace(µ), then KL(P,Q) = e−|µ| − 1 + |µ|.

State and prove Assouad’s lemma.

For n ∈ N, let Mn :=
{
θ = (θ1, . . . , θn)> ∈ Rn : θi 6 θj for i < j

}
. For

θ = (θ1, . . . , θn)> ∈ Mn ∩ [0, 1]n, consider the isotonic regression model Yi = θi + εi

for i ∈ [n] and n > 2, where ε1, . . . , εn
iid∼ Laplace(0). Writing Θ̂ for the set of Borel

measurable functions from Rn to Rn, prove that there exists a universal constant c > 0
such that

inf
θ̂∈Θ̂

sup
θ∈Mn∩[0,1]n

1

n
Eθ

(
‖θ̂(Y1, . . . , Yn)− θ‖2

)
> c · n−2/3.

[Pinsker’s inequality may be used without proof.]
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