MAMA/210, NST3AS/210, MAAS/210

MAT3 MATHEMATICAL TRIPOS Part III

Monday, 12 June, 2023 $-1:30~\mathrm{pm}$ to $3:30~\mathrm{pm}$

PAPER 210

TOPICS IN STATISTICAL THEORY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

SPECIAL REQUIREMENTS None

Cover sheet Treasury tag Script paper Rough paper

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1 Given a distribution function F on \mathbb{R} , define the quantile function $F^{-1}: (0,1] \to (-\infty,\infty]$.

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. Define the *empirical distribution function* \mathbb{F}_n and, for $j \in [n]$, define the *j*th order statistic $X_{(j)}$. Express $X_{(j)}$ in terms of \mathbb{F}_n^{-1} , evaluated at an appropriate point.

State and prove Bennett's inequality.

Let $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U[0, 1]$. For $j \in [n]$, state the distribution of the *j*th order statistic $U_{(j)}$, as well as $\mathbb{E}(U_{(j)})$. Prove that

$$\mathbb{P}\left(U_{(j)} - \frac{j}{n+1} \leqslant -x\right) \leqslant \left(\frac{enp}{j}\right)^{j}$$

for every $x \in \left[0, \frac{j}{n+1}\right)$, where $p := \frac{j}{n+1} - x \in \left(0, \frac{j}{n+1}\right]$.

2 For $\beta, L > 0$, define the Hölder class $\mathcal{F}(\beta, L)$ of densities on \mathbb{R} . In the context of kernel density estimation, define what is meant by a *kernel*, and define the *order* of a kernel.

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f \in \mathcal{F}(\beta, L)$ and let $\hat{\mathcal{F}}_n$ denote the set of Borel measurable functions from $\mathbb{R} \times \mathbb{R}^n$ to \mathbb{R} . Prove that there exists C > 0, depending only on β , such that

$$\inf_{\hat{f}_n \in \hat{\mathcal{F}}_n} \sup_{x \in \mathbb{R}} \sup_{f \in \mathcal{F}(\beta,L)} \mathbb{E}_f \left[\left\{ \hat{f}_n(x; X_1, \dots, X_n) - f(x) \right\}^2 \right] \leqslant C L^{2/(\beta+1)} n^{-2\beta/(2\beta+1)} dx^{-\beta/(2\beta+1)} dx^$$

[You may assume the existence of a bounded kernel K of arbitrarily large order satisfying $\int_{-\infty}^{\infty} |u|^{\beta} |K(u)| du < \infty$.]

UNIVERSITY OF CAMBRIDGE

3 Consider a vector $Y = (Y_1, \ldots, Y_n)^\top$ of responses from the nonparametric regression model

$$Y_i = m(x_i) + \epsilon_i,$$

where $x_i = i/n$ for $i \in [n]$, where $m : [0,1] \to \mathbb{R}$ and where $\epsilon_1, \ldots, \epsilon_n$ are independent with $\mathbb{E}(\epsilon_i) = 0$ and $\operatorname{Var}(\epsilon_i) \leq \sigma^2$ for $i \in [n]$. Fix $x \in (0,1)$, let K denote a bounded kernel that vanishes outside [-1,1], let $p \in \mathbb{N}_0$ and let h > 0. Show that, for suitable matrices $X \in \mathbb{R}^{n \times (p+1)}$ and $W \in \mathbb{R}^{n \times n}$, and subject to a positive definiteness condition that you should state and then assume throughout, the local polynomial estimator of m(x)of degree p, bandwidth h and kernel K can be expressed as an appropriate component of $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_p)^{\top}$, where $\hat{\beta} = (X^{\top}WX)^{-1}X^{\top}WY$.

Now suppose that *m* is differentiable and consider $\hat{m}'_n(x) := \hat{\beta}_1/h$ as an estimator of m'(x). Writing $\hat{m}'_n(x) = n^{-1} \sum_{i=1}^n v_{p,i}(x) Y_i$, prove that whenever *R* is a polynomial of degree at most *p*, we have

$$\frac{1}{n}\sum_{i=1}^{n}v_{p,i}(x)R(x_i) = R'(x).$$

Prove further that, for a suitable $\lambda_0 > 0$,

$$\max_{i \in [n]} \frac{1}{n} |v_{p,i}(x)| \leq \frac{2\|K\|_{\infty}}{\lambda_0 n h^2}$$

and

$$\frac{1}{n}\sum_{i=1}^{n}|v_{p,i}(x)| \leq \frac{2\|K\|_{\infty}}{\lambda_0 nh^2}\sum_{i=1}^{n}\mathbb{1}_{\{|x_i-x|\leq h\}}.$$

Finally, assume that m belongs to the Hölder class $\mathcal{H}(\beta, L)$ for some $\beta > 1$ and L > 0. Prove that when $p \ge \lceil \beta \rceil - 1$ and $h \ge 1/(2n)$, we have

$$\operatorname{Var} \hat{m}'_n(x) \leqslant \frac{16 \|K\|_\infty^2 \sigma^2}{\lambda_0^2 n h^3} \quad \text{and} \quad \left|\operatorname{Bias} \hat{m}'_n(x)\right| \leqslant \frac{8L \|K\|_\infty}{\lambda_0 \beta_0!} h^{\beta-1}.$$

UNIVERSITY OF CAMBRIDGE

4 Let P and Q denote probability measures on a common measurable space. Define the total variation distance TV(P,Q) and the Kullback-Leibler divergence KL(P,Q).

For $\mu \in \mathbb{R}$, write Laplace(μ) for the Laplace distribution with mean μ , having density $x \mapsto e^{-|x-\mu|}/2$ with respect to Lebesgue measure on \mathbb{R} . Prove that if P = Laplace(0) and $Q = \text{Laplace}(\mu)$, then $\text{KL}(P, Q) = e^{-|\mu|} - 1 + |\mu|$.

State and prove Assouad's lemma.

For $n \in \mathbb{N}$, let $\mathcal{M}_n := \{ \theta = (\theta_1, \dots, \theta_n)^\top \in \mathbb{R}^n : \theta_i \leq \theta_j \text{ for } i < j \}$. For $\theta = (\theta_1, \dots, \theta_n)^\top \in \mathcal{M}_n \cap [0, 1]^n$, consider the isotonic regression model $Y_i = \theta_i + \epsilon_i$ for $i \in [n]$ and $n \geq 2$, where $\epsilon_1, \dots, \epsilon_n \stackrel{\text{iid}}{\sim} \text{Laplace}(0)$. Writing $\hat{\Theta}$ for the set of Borel measurable functions from \mathbb{R}^n to \mathbb{R}^n , prove that there exists a universal constant c > 0 such that

$$\inf_{\hat{\theta}\in\hat{\Theta}}\sup_{\theta\in\mathcal{M}_n\cap[0,1]^n}\frac{1}{n}\mathbb{E}_{\theta}\left(\|\hat{\theta}(Y_1,\ldots,Y_n)-\theta\|^2\right)\geqslant c\cdot n^{-2/3}.$$

[Pinsker's inequality may be used without proof.]

END OF PAPER